Read More
Date: 24-1-2022
945
Date: 9-2-2022
716
Date: 18-1-2022
772
|
Consider a first-order logic formula in Skolemized form
Then the Herbrand universe of is defined by the following rules.
1. All constants from belong to . If there are no constants in , then contains an arbitrary constant .
2. If , and an -place function occurs in , then .
The clauses (disjunctions of literals) obtained from those of by replacing all variables by elements of the Herbrand universe are called ground clauses, with similar definitions for a ground literal and ground atom. The set of all ground atoms that can be formed from predicate symbols from and terms from is called the Herbrand base.
Consecutive generation of elements of the Herbrand universe and verification of unsatisfiability of generated elements can be straightforwardly implemented in a computer program. Given the completeness of first-order logic, this program is basically a tool for automated theorem proving. Of course, this exhaustive search is too slow for practical applications.
This program will terminate on all unsatisfiable formulas and will not terminate on satisfiable formulas, which basically shows that the set of unsatisfiable formulas is recursively enumerable. Since provability (or equivalently unsatisfiability) in first-order logic is recursively undecidable, this set is not recursive.
Chang, C.-L. and Lee, R. C.-T. Symbolic Logic and Mechanical Theorem Proving. New York: Academic Press, 1997.
Kleene, S. C. Mathematical Logic. New York: Dover, 2002.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
قسم شؤون المعارف ينظم دورة عن آليات عمل الفهارس الفنية للموسوعات والكتب لملاكاته
|
|
|