Read More
Date: 18-8-2021
![]()
Date: 23-8-2021
![]()
Date: 18-11-2021
![]() |
Newton's forward difference formula is a finite difference identity giving an interpolated value between tabulated points in terms of the first value
and the powers of the forward difference
. For
, the formula states
![]() |
(1) |
When written in the form
![]() |
(2) |
with the falling factorial, the formula looks suspiciously like a finite analog of a Taylor series expansion. This correspondence was one of the motivating forces for the development of umbral calculus.
An alternate form of this equation using binomial coefficients is
![]() |
(3) |
where the binomial coefficient represents a polynomial of degree
in
.
The derivative of Newton's forward difference formula gives Markoff's formulas.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 880, 1972.
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 432, 1987.
Graham, R. L.; Knuth, D. E.; and Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, 1994.
Jordan, C. Calculus of Finite Differences, 3rd ed. New York: Chelsea, 1965.
Nörlund, N. E. Vorlesungen über Differenzenrechnung. New York: Chelsea, 1954.
Riordan, J. An Introduction to Combinatorial Analysis. New York: Wiley, 1980.
Whittaker, E. T. and Robinson, G. "The Gregory-Newton Formula of Interpolation" and "An Alternative Form of the Gregory-Newton Formula." §8-9 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 10-15, 1967.
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|