1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : الرياضيات التطبيقية :

Remez Algorithm

المؤلف:  Cheney, E. W

المصدر:  Introduction to Approximation Theory, 2nd ed. Providence, RI: Amer. Math. Soc., 1999.

الجزء والصفحة:  ...

23-12-2021

2237

Remez Algorithm

The Remez algorithm (Remez 1934), also called the Remez exchange algorithm, is an application of the Chebyshev alternation theorem that constructs the polynomial of best approximation to certain functions under a number of conditions. The Remez algorithm in effect goes a step beyond the minimax approximation algorithm to give a slightly finer solution to an approximation problem.

Parks and McClellan (1972) observed that a filter of a given length with minimal ripple would have a response with the same relationship to the ideal filter that a polynomial of degree <=n of best approximation has to a certain function, and so the Remez algorithm could be used to generate the coefficients.

In this application, the algorithm is an iterative procedure consisting of two steps. One step is the determination of candidate filter coefficients h(n) from candidate "alternation frequencies," which involves solving a set of linear equations. The other step is the determination of candidate alternation frequencies from the candidate filter coefficients (Lim and Oppenheim 1988). Experience has shown that the algorithm converges quickly, and is widely used in practice to design filters with optimal response for a given number of taps. However, care should be used in saying "optimal" coefficients, as this is implementation dependent and also depends on fixed or floating-point implementation as well as numerical accuracy.

FORTRAN implementation is given by Rabiner (1975). A description emphasizing the mathematical foundations rather than digital signal processing applications is given by Cheney (1999), who also spells Remez as Remes (Cheney 1999, p. 96).


REFERENCES:

Cheney, E. W. Introduction to Approximation Theory, 2nd ed. Providence, RI: Amer. Math. Soc., 1999.

DeVore, R. A. and Lorentz, G. G. Constructive Approximation. Berlin: Springer-Verlag, 1993.

Lim, J. S. and Oppenheim, A. V. (Eds). Advanced Topics in Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1988.

Parks, T. W. and McClellan, J. J. "Chebyshev Approximation for Nonrecursive Digital Filters with Linear Phase." IEEE Trans. Circuit Th. 19, 189-194, 1972.

Rabiner, L. W. and Gold, B. Theory and Application of Digital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975.

Remez, E. Ya. "Sur le calcul effectif des polynômes d'approximation de Tschebyscheff." C. P. Paris, 337-340, 1934.

Remez, E. Ya. General Computational Methods of Chebyshev Approximation: The Problems with Linear Real Parameters. Atomic Energy Translation 4491. Kiev, 1957.

EN

تصفح الموقع بالشكل العمودي