المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الجزر Carrot (من الزراعة الى الحصاد)
2024-11-24
المناخ في مناطق أخرى
2024-11-24
أثر التبدل المناخي على الزراعة Climatic Effects on Agriculture
2024-11-24
نماذج التبدل المناخي Climatic Change Models
2024-11-24
التربة المناسبة لزراعة الجزر
2024-11-24
نظرية زحزحة القارات وحركة الصفائح Plate Tectonic and Drifting Continents
2024-11-24

البوليمرات المشتركة
2024-04-03
implicational scaling
2023-09-21
حلف النباش
21-2-2021
أنماط الوظائف الحضرية للمدن - وظيفة النقل والمواصلات
20/10/2022
الغاز الطبيعي المنفرد
18-4-2021
دور الانتشار الثقافي في التكامل الحضاري للمدنية العراقية القديمة
3-12-2019

Bessel,s Finite Difference Formula  
  
1172   05:51 مساءً   date: 25-11-2021
Author : Abramowitz, M. and Stegun, I. A.
Book or Source : Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
Page and Part : ...


Read More
Date: 25-8-2021 1178
Date: 18-9-2021 972
Date: 15-9-2021 1121

Bessel's Finite Difference Formula

An interpolation formula, sometimes known as the Newton-Bessel formula, given by

 f_p=f_0+pdelta_(1/2)+B_2(delta_0^2+delta_1^2)+B_3delta_(1/2)^3+B_4(delta_0^4+delta_1^4)+B_5delta_(1/2)^5+...,

(1)

for p in [0,1], where delta is the central difference and

B_(2n) = 1/2G_(2n)

(2)

= 1/2(E_(2n)+F_(2n))

(3)

B_(2n+1) = G_(2n+1)-1/2G_(2n)

(4)

= 1/2(F_(2n)-E_(2n))

(5)

E_(2n) = G_(2n)-G_(2n+1)

(6)

= B_(2n)-B_(2n+1)

(7)

F_(2n) = G_(2n+1)

(8)

= B_(2n)+B_(2n+1),

(9)

where G_k are the coefficients from Gauss's backward formula and Gauss's forward formula and E_k and F_k are the coefficients from Everett's formula. The B_ks also satisfy

B_(2n)(p) = B_(2n)(q)

(10)

B_(2n+1)(p) = -B_(2n+1)(q),

(11)

for

 q=1-p.

(12)


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 880, 1972.

Acton, F. S. Numerical Methods That Work, 2nd printing. Washington, DC: Math. Assoc. Amer., pp. 90-91, 1990.

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 433, 1987.

Whittaker, E. T. and Robinson, G. "The Newton-Bessel Formula." §24 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 39-40, 1967.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.