

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Thin Plate Spline
المؤلف:
Bookstein, F. L
المصدر:
"Principal Warps: Thin Plate Splines and the Decomposition of Deformations." IEEE Trans. Pattern Anal. Mach. Intell. 11
الجزء والصفحة:
...
23-11-2021
1184
Thin Plate Spline
The thin plate spline is the two-dimensional analog of the cubic spline in one dimension. It is the fundamental solution to the biharmonic equation, and has the form
![]() |
Given a set of data points, a weighted combination of thin plate splines centered about each data point gives the interpolation function that passes through the points exactly while minimizing the so-called "bending energy." Bending energy is defined here as the integral over
of the squares of the second derivatives,
![]() |
Regularization may be used to relax the requirement that the interpolant pass through the data points exactly.
The name "thin plate spline" refers to a physical analogy involving the bending of a thin sheet of metal. In the physical setting, the deflection is in the
direction, orthogonal to the plane. In order to apply this idea to the problem of coordinate transformation, one interprets the lifting of the plate as a displacement of the
or
coordinates within the plane. Thus, in general, two thin plate splines are needed to specify a two-dimensional coordinate transformation.
REFERENCES:
Bookstein, F. L. "Principal Warps: Thin Plate Splines and the Decomposition of Deformations." IEEE Trans. Pattern Anal. Mach. Intell. 11, 567-585, 1989.
Duchon, J. "Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces." RAIRO Analyse Numérique 10, 5-12, 1976.
Meinguet, J. "Multivariate Interpolation at Arbitrary Points Made Simple." J. Appl. Math. Phys. 30, 292-304, 1979.
Wahba, G. Spline Models for Observational Data. Philadelphia, PA: SIAM, 1990.a
الاكثر قراءة في الرياضيات التطبيقية
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية


![I[f(x,y)]=intint_(R^2)(f_(xx)^2+2f_(xy)^2+f_(yy)^2)dxdy.](https://mathworld.wolfram.com/images/equations/ThinPlateSpline/NumberedEquation2.gif)
قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)