المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الخرشوف Artichoke (من الزراعة الى الحصاد)
2024-11-24
ميعاد زراعة الجزر
2024-11-24
أثر التأثير الاسترجاعي على المناخ The Effects of Feedback on Climate
2024-11-24
عمليات الخدمة اللازمة للجزر
2024-11-24
العوامل الجوية المناسبة لزراعة الجزر
2024-11-24
الجزر Carrot (من الزراعة الى الحصاد)
2024-11-24

الجوائز
23-3-2018
نخيل الزينة (نخيل ذيل الجمل)
2024-07-12
مدينة ستراسبورغ
17-5-2017
القناعة في الحب
24/10/2022
اثار اضراب الموظف العام
7-8-2017
فذلكة القول بالصرفة
6-11-2014

Neville,s Algorithm  
  
1014   04:03 مساءً   date: 21-11-2021
Author : المرجع الالكتروني للمعلوماتيه
Book or Source : www.almerja.com
Page and Part : ...


Read More
Date: 15-10-2021 1003
Date: 6-1-2016 1363
Date: 19-11-2021 2515

Neville's Algorithm

Neville's algorithm is an interpolation algorithm which proceeds by first fitting a polynomial of degree 0 through the point (x_k,y_k) for k=1, ..., n, i.e., P_k(x)=y_k. A second iteration is then performed in which P_i and P_(i+1) are combined to fit through pairs of points, yielding P_(12)P_(23), .... The procedure is repeated, generating a "pyramid" of approximations until the final result is reached

 P_1; P_2; P_3; P_4P_(12); P_(23); P_(34)P_(123); P_(234)P_(1234).

The final result is

 P_(i(i+1)...(i+m))=((x-x_(i+m))P_(i(i+1)...(i+m-1)))/(x_i-x_(i+m))+((x_i-x)P_((i+1)(i+2)...(i+m)))/(x_i-x_(i+m)).



الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.