تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Cubic Spline
المؤلف:
Bartels, R. H.; Beatty, J. C.; and Barsky, B. A
المصدر:
"Hermite and Cubic Spline Interpolation." Ch. 3 in An Introduction to Splines for Use in Computer Graphics and Geometric Modelling. San Francisco, CA: Morgan Kaufmann
الجزء والصفحة:
...
19-11-2021
1952
Cubic Spline
A cubic spline is a spline constructed of piecewise third-order polynomials which pass through a set of control points. The second derivative of each polynomial is commonly set to zero at the endpoints, since this provides a boundary condition that completes the system of
equations. This produces a so-called "natural" cubic spline and leads to a simple tridiagonal system which can be solved easily to give the coefficients of the polynomials. However, this choice is not the only one possible, and other boundary conditions can be used instead.
Cubic splines are implemented in the Wolfram Language as BSplineCurve[pts, SplineDegree -> 3].
Consider 1-dimensional spline for a set of points
. Following Bartels et al. (1998, pp. 10-13), let the
th piece of the spline be represented by
![]() |
(1) |
where is a parameter
and
, ...,
. Then
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
Taking the derivative of in each interval then gives
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
Solving (2)-(5) for ,
,
, and
then gives
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
Now require that the second derivatives also match at the points, so
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
for interior points, as well as that the endpoints satisfy
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
This gives a total of equations for the
unknowns. To obtain two more conditions, require that the second derivatives at the endpoints be zero, so
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
Rearranging all these equations (Bartels et al. 1998, pp. 12-13) leads to the following beautifully symmetric tridiagonal system
![]() |
(18) |
If the curve is instead closed, the system becomes
![]() |
(19) |
REFERENCES:
Bartels, R. H.; Beatty, J. C.; and Barsky, B. A. "Hermite and Cubic Spline Interpolation." Ch. 3 in An Introduction to Splines for Use in Computer Graphics and Geometric Modelling. San Francisco, CA: Morgan Kaufmann, pp. 9-17, 1998.
Burden, R. L.; Faires, J. D.; and Reynolds, A. C. Numerical Analysis, 6th ed. Boston, MA: Brooks/Cole, pp. 120-121, 1997.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Cubic Spline Interpolation." §3.3 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 107-110, 1992.
الاكثر قراءة في الرياضيات التطبيقية
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
