Read More
Date: 1-9-2021
962
Date: 16-8-2021
1070
Date: 3-10-2021
1043
|
Jackson's theorem is a statement about the error of the best uniform approximation to a real function on by real polynomials of degree at most . Let be of bounded variation in and let and denote the least upper bound of and the total variation of in , respectively. Given the function
(1) |
then the coefficients
(2) |
of its Fourier-Legendre series, where is a Legendre polynomial, satisfy the inequalities
(3) |
Moreover, the Fourier-Legendre series of converges uniformly and absolutely to in .
Bernstein (1913) strengthened Jackson's theorem to
(4) |
A specific application of Jackson's theorem shows that if
(5) |
then
(6) |
REFERENCES:
Bernstein, S. N. "Sur la meilleure approximation de par les polynomes de degrés donnés." Acta Math. 37, 1-57, 1913.
Cheney, E. W. Introduction to Approximation Theory, 2nd ed. Providence, RI: Amer. Math. Soc., 1999.
Finch, S. R. "Lebesgue Constants." §4.2 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 250-255, 2003.
Jackson, D. The Theory of Approximation. New York: Amer. Math. Soc., p. 76, 1930.
Korneīĭčuk, N. P. "The Exact Constant in D. Jackson's Theorem on Best Uniform Approximation of Continuous Periodic Functions." Dokl. Akad. Nauk 145, 514-515, 1962.
Rivlin, T. J. An Introduction to the Approximation of Functions. New York: Dover, 1981.
Sansone, G. Orthogonal Functions, rev. English ed. New York: Dover, pp. 205-208, 1991.
|
|
5 علامات تحذيرية قد تدل على "مشكل خطير" في الكبد
|
|
|
|
|
لحماية التراث الوطني.. العتبة العباسية تعلن عن ترميم أكثر من 200 وثيقة خلال عام 2024
|
|
|