Runge,s Theorem
المؤلف:
Szegö, G
المصدر:
Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc
الجزء والصفحة:
...
17-11-2021
1590
Runge's Theorem
Let
be compact, let
be analytic on a neighborhood of
, and let
contain at least one point from each connected component of
. Then for any
, there is a rational function
with poles in
such that
(Krantz 1999, p. 143).
A polynomial version can be obtained by taking
{infty}" src="https://mathworld.wolfram.com/images/equations/RungesTheorem/Inline9.gif" style="height:15px; width:48px" />. Let
be an analytic function which is regular in the interior of a Jordan curve
and continuous in the closed domain bounded by
. Then
can be approximated with arbitrary accuracy by polynomials (Szegö 1975, p. 5; Krantz 1999, p. 144).
REFERENCES:
Krantz, S. G. "Runge's Theorem." §11.1.2 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 143-144, 1999.
Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., p. 7, 1975.
الاكثر قراءة في الرياضيات التطبيقية
اخر الاخبار
اخبار العتبة العباسية المقدسة