تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Resistance Distance
المؤلف:
Babić, D.; Klein, D. J.; Lukovits, I.; Nikolić, S.; and Trinajstić, N
المصدر:
"Resistance-Distance Matrix: A Computational Algorithm and Its Applications." Int. J. Quant. Chem
الجزء والصفحة:
...
13-10-2021
2286
Resistance Distance
The resistance distance between vertices and
of a graph
is defined as the effective resistance between the two vertices (as when a battery is attached across them) when each graph edge is replaced by a unit resistor (Klein and Randić 1993, Klein 2002). This resistance distance is a metric on graphs (Klein 2002).
Let be the resistance distance between vertices
and
in a connected graph
on
nodes, and define
![]() |
(1) |
where is the Laplacian matrix of
and
is the unit
matrix. Then the resistance distance matrix is given by
![]() |
(2) |
where denotes a matrix inverse (Babić et al. 2002). This can be written explicitly as
![]() |
(3) |
Graphs that have identical resistance distance sets are known as resistance-equivalent graphs. The smallest such pairs of graphs have nine vertices.
For example, the resistance distance matrix for the tetrahedral graph is
![]() |
(4) |
and for the cubical graph is given by
![]() |
(5) |
The resistance distances for the Platonic graphs (Klein 2002) are summarized in the following table, expressed over a common denominator, and illustrated graphically above. The case of the dodecahedral graph was considered by Jeans (1925).
solid | denominator | sorted resistance distances |
cubical graph | 12 | 7, 9, 10 |
dodecahedral graph | 30 | 19, 27, 32, 34, 35 |
icosahedral graph | 30 | 11, 14, 15 |
octahedral graph | 12 | 5, 6 |
tetrahedral graph | 2 | 1 |
Similarly, the resistance distances for the Archimedean solids are given below and illustrated graphically above.
solid | denominator | sorted resistance distances |
cuboctahedral graph | 24 | 11, 14, 15, 16 |
great rhombicosidodecahedral graph | 267514380 | 166172084, 173751140, 190646963, 221685105, 272372574, 295109742, 301338668, 320673518, 345148397, 354812283, 361971116, 369550172, 381064593, 390079665, 394156361, 403801761, 405280440, 413491211, 417927248, 423905327, 430313930, 431484383, 431615693, 435250932, 438762291, 442133634, 445951845, 447430524, 456438590, 457489082, 458175207, 462416669, 463372068, 470296886, 476034686, 476835425, 478444515, 478664382, 483745052, 485853936, 486805896, 493083218, 497108172, 497550579, 499061297, 502747440, 503089004, 505386815, 506941514, 509320803, 511182242, 513097181, 514936860, 515575173, 516510357, 517043121, 520894371, 521353535, 521707218, 522228251, 523782950, 525033803, 528672702, 529607886, 530101733, 531714147, 533238108, 535548332, 537089358, 538353884, 540120215, 540275613, 540864390, 541799574, 542466050 |
great rhombicuboctahedral graph | 102960 | 63859, 65767, 72004, 84288, 102999, 108723, 113755, 118948, 127093, 129019, 130927, 130977, 136755, 137289, 140832, 142600, 143013, 146029, 147793, 151465, 151627, 153495, 154029, 154083, 155244, 158539, 158787, 160303, 162184, 162588, 163215, 163803, 164632 |
icosidodecahedral graph | 180 | 87, 122, 127, 140, 147, 152, 157, 160 |
small rhombicosidodecahedral graph | 114840 | 52543, 60383, 72548, 81253, 83903, 92075, 92185, 95313, 96068, 100983, 103003, 104443, 106023, 108848, 109713, 110795, 110905, 113423, 113653, 115208, 115823, 116623, 117180 |
small rhombicuboctahedral graph | 1680 | 767, 843, 1028, 1071, 1133, 1229, 1263, 1292, 1323, 1343, 1368 |
snub cubical graph | 38016 | 14137, 14316, 15137, 18995, 19063, 19248, 20069, 20143, 21661, 21803, 22068, 22099, 22691, 23023, 23171, 23244 |
snub dodecahedral graph | 71716200 | 26954193, 27485504, 29823985, 37376431, 38225816, 40564297, 40882371, 40985079, 44358325, 45182813, 45417384, 45660607, 45978681, 46559183, 48175213, 48958491, 49240567, 49914079, 49964316, 50687019, 50856597, 51341449, 52281493, 52553379, 52608385, 52759287, 52770720, 53258901, 53486365, 54026481, 54238007, 54360689, 54538180, 55029105, 55182621, 55349725, 55370172 |
truncated cubical graph | 60 | 35, 45, 65, 77, 78, 80, 83, 87, 91, 93, 94 |
truncated dodecahedral graph | 450 | 267, 351, 519, 635, 640, 672, 731, 751, 755, 788, 810, 835, 863, 876, 890, 896, 907, 915, 920, 934, 946, 952, 955 |
truncated icosahedral graph | 25080 | 16273, 16778, 23234, 24749, 27274, 29359, 29864, 31488, 32519, 33133, 33835, 34405, 34843, 35369, 36048, 36704, 36769, 37534, 37859, 38054, 38438, 38503, 38760 |
truncated octahedral graph | 1008 | 625, 682, 810, 981, 1081, 1096, 1153, 1197, 1242, 1258, 1273, 1296 |
truncated tetrahedral graph | 30 | 17, 21, 29, 32, 33 |
REFERENCES:
Babić, D.; Klein, D. J.; Lukovits, I.; Nikolić, S.; and Trinajstić, N. "Resistance-Distance Matrix: A Computational Algorithm and Its Applications." Int. J. Quant. Chem. 90, 166-176, 2002.
Devillers, J. and A. T. Balaban (Eds.). Topological Indices and Related Descriptors in QSAR and QSPR. Amsterdam, Netherlands: Gordon and Breach, pp. 81-82, 2000.
Jeans, J. H. Chapter 9, Question 17 in The Mathematical Theory of Electricity and Magnetism, 5th ed. Cambridge, England: University Press, p. 337, 1925.
Klein, D. J. and Randić, M. "Resistance Distance." J. Math. Chem. 12, 81-95, 1993.
Klein, D. J. "Resistance-Distance Sum Rules." Croatica Chem. Acta 75, 633-649, 2002.
Lukovits, I.; Nikolić, S.; and Trinajstić, N. "Resistance Distance in Regular Graphs." Int. J. Quan. Chem. 71, 217-225, 1999.
Lukovits, I.; Nikolić, S.; and Trinajstić, N. "Note on the Resistance Distances in the Dodecahedron." Croatica Chem. Acta 73, 957-967, 2000.
Palacios, J. L. "Closed-Form Formulas for Kirchhoff Index." Int. J. Quant. Chem. 81, 135-140, 2001.
Xiao, W. and Gutman, I. "Resistance Distance and Laplacian Spectrum." Theor. Chem. Acc. 110, 284-289, 2003.
الاكثر قراءة في الرياضيات التطبيقية
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
