Read More
Date: 2-10-2021
![]()
Date: 18-11-2021
![]()
Date: 4-11-2021
![]() |
Let be an ergodic endomorphism of the probability space
and let
be a real-valued measurable function. Then for almost every
, we have
![]() |
(1) |
as . To illustrate this, take
to be the characteristic function of some subset
of
so that
![]() |
(2) |
The left-hand side of (1) just says how often the orbit of (that is, the points
,
,
, ...) lies in
, and the right-hand side is just the measure of
. Thus, for an ergodic endomorphism, "space-averages = time-averages almost everywhere." Moreover, if
is continuous and uniquely ergodic with Borel measure
and
is continuous, then we can replace the almost everywhere convergence in (1) with "everywhere."
REFERENCES:
Cornfeld, I.; Fomin, S.; and Sinai, Ya. G. Appendix 3 in Ergodic Theory. New York: Springer-Verlag, 1982.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
قسم شؤون المعارف ووفد من جامعة البصرة يبحثان سبل تعزيز التعاون المشترك
|
|
|