المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الموطن الاصلي للفجل
2024-11-24
التربة المناسبة لزراعة الفجل
2024-11-24
مقبرة (انحور خعوي) مقدم رب الأرضين في مكان الصدق في جبانة في دير المدينة
2024-11-24
اقسام الأسارى
2024-11-24
الوزير نفررنبت في عهد رعمسيس الرابع
2024-11-24
أصناف الكفار وكيفية قتالهم
2024-11-24

موعد و طريقة جمع النباتات الطبية والعطرية
24-11-2020
الاسهال الدهني Steatorrhea
19-3-2020
الاجراءات الواجب مراعاتها عند حدوث التسمم بالمبيدات (الاسعافات الاولية)
5-10-2016
مسؤولية الآباء والأبناء
2023-04-26
New Biotechnologies For Drug Discovery
19-12-2020
Goldbach Partition
6-10-2020

Anosov Map  
  
1863   03:46 مساءً   date: 4-10-2021
Author : Anosov, D.
Book or Source : "Roughness of Geodesic Flows on Compact Riemannian Manifolds of Negative Curvature." Dokl. Akad. Nauk SSSR 145
Page and Part : ...


Read More
Date: 18-10-2021 1311
Date: 13-9-2021 1157
Date: 19-11-2021 1699

Anosov Map

The definition of an Anosov map is the same as for an Anosov diffeomorphism except that instead of being a diffeomorphism, it is a map. In particular, an Anosov map is a C^1 map f of a manifold M to itself such that the tangent bundle of M is hyperbolic with respect to f.

A trivial example is to map all of M to a single point of M. Here, the eigenvalues are all zero. A less trivial example is an expanding map on the circle S^1, e.g., x|->2x (mod 1), where S^1 is identified with the real numbers (mod 1). Here, all the eigenvalues equal 2 (i.e., the eigenvalue at each point of S^1). Note that this map is not a diffeomorphism because f(x+(1/2))=f(x), so it has no inverse.

A nontrivial example is formed by taking Arnold's cat map on the 2-torus T^2, and crossing it with an expanding map on S^1 to form an Anosov map on the 3-torus T^3=T^2×S^1, where × denotes the Cartesian product. In other words,

 [x_(n+1); y_(n+1); z_(n+1)]=[1 1 0; 1 2 0; 0 0 2][x_n; y_n; z_n]     (mod 1).

REFERENCES:

Anosov, D. "Roughness of Geodesic Flows on Compact Riemannian Manifolds of Negative Curvature." Dokl. Akad. Nauk SSSR 145, 707-709, 1962. English translation in Soviet Math. Dokl. 3, 1068-1069, 1962.

Anosov, D. "Ergodic Properties of Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature." Dokl. Akad. Nauk SSSR 151, 1250-1252, 1963. English translated in Soviet Math. Dokl. 4, 1153-1156, 1963.

Lichtenberg, A. J. and Lieberman, M. A. Regular and Chaotic Dynamics, 2nd ed. New York: Springer-Verlag, pp. 305-307, 1992.

Sondow, J. "Fixed Points of Anosov Maps of Certain Manifolds." Proc. Amer. Math. Soc. 61, 381-384, 1976.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.