Read More
Date: 12-9-2021
895
Date: 24-11-2021
1389
Date: 15-12-2021
800
|
The Blancmange function, also called the Takagi fractal curve (Peitgen and Saupe 1988), is a pathological continuous function which is nowhere differentiable. Its name derives from the resemblance of its first iteration to the shape of the dessert commonly made with milk or cream and sugar thickened with gelatin.
The iterations towards the continuous function are batrachions resembling the Hofstadter-Conway $10,000 sequence. The first six iterations are illustrated below. The th iteration contains points, where , and can be obtained by setting , letting
and looping over to 1 by steps of and to by steps of .
REFERENCES:
Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, pp. 111-113, 2007.
Dixon, R. Mathographics. New York: Dover, pp. 175-176 and 210, 1991.
Peitgen, H.-O. and Saupe, D. (Eds.). "Midpoint Displacement and Systematic Fractals: The Takagi Fractal Curve, Its Kin, and the Related Systems." §A.1.2 in The Science of Fractal Images. New York: Springer-Verlag, pp. 246-248, 1988.
Takagi, T. "A Simple Example of the Continuous Function without Derivative." Proc. Phys. Math. Japan 1, 176-177, 1903.
Tall, D. O. "The Blancmange Function, Continuous Everywhere but Differentiable Nowhere." Math. Gaz. 66, 11-22, 1982.
Tall, D. "The Gradient of a Graph." Math. Teaching 111, 48-52, 1985.
Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, pp. 16-17, 1991.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|