Read More
Date: 16-8-2021
1078
Date: 12-9-2021
896
Date: 5-1-2016
1094
|
Also known as metric entropy. Divide phase space into -dimensional hypercubes of content . Let be the probability that a trajectory is in hypercube at , at , at , etc. Then define
(1) |
where is the information needed to predict which hypercube the trajectory will be in at given trajectories up to . The Kolmogorov entropy is then defined by
(2) |
The Kolmogorov entropy is related to Lyapunov characteristic exponents by
(3) |
REFERENCES:
Ott, E. Chaos in Dynamical Systems. New York: Cambridge University Press, p. 138, 1993.
Schuster, H. G. Deterministic Chaos: An Introduction, 3rd ed. New York: Wiley, p. 112, 1995.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مدرسة دار العلم.. صرح علميّ متميز في كربلاء لنشر علوم أهل البيت (عليهم السلام)
|
|
|