Read More
Date: 15-8-2021
![]()
Date: 31-5-2021
![]()
Date: 2-7-2017
![]() |
Let be a real vector space (e.g., the real continuous functions
on a closed interval
, two-dimensional Euclidean space
, the twice differentiable real functions
on
, etc.). Then
is a real subspace of
if
is a subset of
and, for every
,
and
(the reals),
and
. Let
be a homogeneous system of linear equations in
, ...,
. Then the subset
of
which consists of all solutions of the system
is a subspace of
.
More generally, let be a field with
, where
is prime, and let
denote the
-dimensional vector space over
. The number of
-D linear subspaces of
is
![]() |
(1) |
where this is the q-binomial coefficient (Aigner 1979, Exton 1983). The asymptotic limit is
![]() |
(2) |
where
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
(Finch 2003), where is a Jacobi theta function and
is a q-Pochhammer symbol. The case
gives the q-analog of the Wallis formula.
REFERENCES:
Aigner, M. Combinatorial Theory. New York: Springer-Verlag, 1979.
Exton, H. q-Hypergeometric Functions and Applications. New York: Halstead Press, 1983.
Finch, S. R. "Lengyel's Constant." Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 316-321, 2003.
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|