Read More
Date: 26-5-2021
![]()
Date: 4-7-2021
![]()
Date: 6-7-2021
![]() |
A set in a first-countable space is dense in
if
, where
is the set of limit points of
. For example, the rational numbers are dense in the reals. In general, a subset
of
is dense if its set closure
.
A real number is said to be
-dense iff, in the base-
expansion of
, every possible finite string of consecutive digits appears. If
is
-normal, then
is also
-dense. If, for some
,
is
-dense, then
is irrational. Finally,
is
-dense iff the sequence
is dense (Bailey and Crandall 2001, 2003).
REFERENCES:
Bailey, D. H. and Crandall, R. E. "On the Random Character of Fundamental Constant Expansions." Exper. Math. 10, 175-190, 2001.
Bailey, D. H. and Crandall, R. E. "Random Generators and Normal Numbers." Exper. Math. 11, 527-546, 2002.
|
|
للعاملين في الليل.. حيلة صحية تجنبكم خطر هذا النوع من العمل
|
|
|
|
|
"ناسا" تحتفي برائد الفضاء السوفياتي يوري غاغارين
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|