المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
شرائط الاجير للحج
2025-04-05
زيارة اهل الايمان
2025-04-05
جناية الحكام
2025-04-05
Provision of positive support Case study
2025-04-05
القصيدة الطويلة وقصيدة القناع
2025-04-05
اسم الفاعل
2025-04-05

ترتيب المرجّحات
1-9-2016
الموارد البشرية و تحديات العولمة
19-10-2016
صبر علي على غصب الغاصبين لمنصب الخلافة
3-12-2019
معنى البداء
20-11-2014
اختبار الصلابة للبولمر Hardness Test
13-12-2017
بطولة عمّار (رض) وثبات إيمانه.
2023-11-07

Symplectic Manifold  
  
1502   01:25 صباحاً   date: 14-7-2021
Author : Sjamaar, R
Book or Source : "Symplectic Reduction and Riemann-Roch Formulas for Multiplicities." Bull. Amer. Math. Soc. 33
Page and Part : 327-338


Read More
Date: 10-8-2021 2026
Date: 20-6-2021 1793
Date: 16-7-2021 1153

Symplectic Manifold

A pair (M,omega), where M is a manifold and omega is a symplectic form on M. The phase space R^(2n)=R^n×R^n is a symplectic manifold. Near every point on a symplectic manifold, it is possible to find a set of local "Darboux coordinates" in which the symplectic form has the simple form

 omega=sum_(k)dq_k ^ dp_k

(Sjamaar 1996), where dq_k ^ dp_k is a wedge product.


REFERENCES:

Sjamaar, R. "Symplectic Reduction and Riemann-Roch Formulas for Multiplicities." Bull. Amer. Math. Soc. 33, 327-338, 1996.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.