Read More
Date: 23-1-2020
![]()
Date: 2-11-2019
![]()
Date: 13-2-2020
![]() |
Let and
be Lucas sequences generated by
and
, and define
![]() |
(1) |
Let be an odd composite number with
, and
with
odd and
, where
is the Legendre symbol. If
![]() |
(2) |
or
![]() |
(3) |
for some with
, then
is called a strong Lucas pseudoprime with parameters
.
A strong Lucas pseudoprime is a Lucas pseudoprime to the same base. Arnault (1997) showed that any composite number is a strong Lucas pseudoprime for at most 4/15 of possible bases (unless
is the product of twin primes having certain properties).
REFERENCES:
Arnault, F. "The Rabin-Monier Theorem for Lucas Pseudoprimes." Math. Comput. 66, 869-881, 1997.
Ribenboim, P. "Euler-Lucas Pseudoprimes (elpsp()) and Strong Lucas Pseudoprimes (slpsp(
))." §2.X.C in The New Book of Prime Number Records, 3rd ed. New York: Springer-Verlag, pp. 130-131, 1996.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|