Read More
Date: 18-8-2020
1419
Date: 19-2-2020
693
Date: 2-11-2020
695
|
A quasiperfect number, called a "slightly excessive number" by Singh (1997), is a "least" abundant number, i.e., one such that
Quasiperfect numbers are therefore the sum of their nontrivial divisors. No quasiperfect numbers are known, although if any exist, they must be greater than and have seven or more distinct prime factors (Hagis and Cohen 1982).
REFERENCES:
Guy, R. K. "Almost Perfect, Quasi-Perfect, Pseudoperfect, Harmonic, Weird, Multiperfect and Hyperperfect Numbers." §B2 in Unsolved Problems in Number Theory, 2nd ed. New York:Springer-Verlag, pp. 45-53, 1994.
Hagis, P.; and Cohen, G. L. "Some Results Concerning Quasiperfect Numbers." J. Austral. Math. Soc. Ser. A 33, 275-286, 1982.
Singh, S. Fermat's Enigma: The Epic Quest to Solve the World's Greatest Mathematical Problem. New York: Walker, p. 13, 1997.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|