Read More
Date: 28-12-2020
![]()
Date: 12-7-2020
![]()
Date: 24-10-2020
![]() |
Let ,
be integers satisfying
![]() |
(1) |
Then roots of
![]() |
(2) |
are
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
so
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
Now define
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
for integer , so the first few values are
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
![]() |
![]() |
![]() |
(19) |
![]() |
![]() |
![]() |
(20) |
![]() |
![]() |
![]() |
(21) |
and
![]() |
![]() |
![]() |
(22) |
![]() |
![]() |
![]() |
(23) |
![]() |
![]() |
![]() |
(24) |
![]() |
![]() |
![]() |
(25) |
![]() |
![]() |
![]() |
(26) |
![]() |
![]() |
![]() |
(27) |
![]() |
![]() |
![]() |
(28) |
![]() |
![]() |
![]() |
(29) |
![]() |
![]() |
![]() |
(30) |
![]() |
![]() |
![]() |
(31) |
![]() |
![]() |
![]() |
(32) |
Closed forms for these are given by
![]() |
![]() |
![]() |
(33) |
![]() |
![]() |
![]() |
(34) |
The sequences
![]() |
![]() |
![]() |
(35) |
![]() |
![]() |
![]() |
(36) |
are called Lucas sequences, where the definition is usually extended to include
![]() |
(37) |
The following table summarizes special cases of and
.
![]() |
![]() |
![]() |
![]() |
Fibonacci numbers | Lucas numbers |
![]() |
Pell numbers | Pell-Lucas numbers |
![]() |
Jacobsthal numbers | Pell-Jacobsthal numbers |
The Lucas sequences satisfy the general recurrence relations
![]() |
![]() |
![]() |
(38) |
![]() |
![]() |
![]() |
(39) |
![]() |
![]() |
![]() |
(40) |
![]() |
![]() |
![]() |
(41) |
![]() |
![]() |
![]() |
(42) |
![]() |
![]() |
![]() |
(43) |
Taking then gives
![]() |
![]() |
![]() |
(44) |
![]() |
![]() |
![]() |
(45) |
Other identities include
![]() |
![]() |
![]() |
(46) |
![]() |
![]() |
![]() |
(47) |
![]() |
![]() |
![]() |
(48) |
![]() |
![]() |
![]() |
(49) |
![]() |
![]() |
![]() |
(50) |
These formulas allow calculations for large to be decomposed into a chain in which only four quantities must be kept track of at a time, and the number of steps needed is
. The chain is particularly simple if
has many 2s in its factorization.
REFERENCES:
Dickson, L. E. "Recurring Series; Lucas' ,
." Ch. 17 in History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, pp. 393-411, 2005.
Ribenboim, P. The Little Book of Big Primes. New York: Springer-Verlag, pp. 35-53, 1991.
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|