Read More
Date: 10-2-2020
1197
Date: 4-11-2020
576
Date: 7-6-2020
622
|
The Engel expansion, also called the Egyptian product, of a positive real number is the unique increasing sequence of positive integers such that
The following table gives the Engel expansions of Catalan's constant, e, the Euler-Mascheroni constant , , and the golden ratio .
constant | OEIS | Engel expansion |
A028254 | 1, 3, 5, 5, 16, 18, 78, 102, 120, ... | |
A028257 | 1, 2, 3, 3, 6, 17, 23, 25, 27, 73, ... | |
A118239 | 1, 2, 12, 30, 56, 90, 132, 182, ... | |
A000027 | 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ... | |
A059193 | 3, 10, 28, 54, 88, 130, 180, 238, 304, 378, ... | |
A053977 | 2, 7, 13, 19, 85, 2601, 9602, 46268, 4812284, ... | |
A054543 | 2, 2, 2, 4, 4, 5, 5, 12, 13, 41, 110, ... | |
A059180 | 2, 3, 7, 9, 104, 510, 1413, 2386, ... | |
A028259 | 1, 2, 5, 6, 13, 16, 16, 38, 48, 58, 104, ... | |
A006784 | 1, 1, 1, 8, 8, 17, 19, 300, 1991, 2492, ... | |
A014012 | 4, 4, 11, 45, 70, 1111, 4423, 5478, 49340, ... | |
A068377 | 1, 6, 20, 42, 72, 110, 156, 210, ... | |
A118326 | 2, 2, 22, 50, 70, 29091, 49606, 174594, ... |
has a very regular Engel expansion, namely 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ... (OEIS A000027). Interestingly, the expansion for the hyperbolic sine has closed form for , which means the expansion for the hyperbolic cosine has the closed form for . Similarly, the Engel expansion for is for , which follows from
REFERENCES:
Engel, F. "Entwicklung der Zahlen nach Stammbruechen." Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg. pp. 190-191, 1913.
Erdős, P. and Shallit, J. O. "New Bounds on the Length of Finite Pierce and Engel Series." Sem. Theor. Nombres Bordeaux 3, 43-53, 1991.
Finch, S. R. Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 53-59, 2003.
Schweiger, F. Ergodic Theory of Fibred Systems and Metric Number Theory. Oxford, England: Oxford University Press, 1995.
Sloane, N. J. A. Sequences A000027/M0472, A006784/M4475, A014012, A028254, A028257, A028259, A053977, A054543, A059180, A059193, A068377, A118239, and A118326 in "The On-Line Encyclopedia of Integer Sequences."
Wu, J. "How Many Points Have the Same Engel and Sylvester Expansions?." J. Number Th. 103, 16-26, 2003.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|