Read More
Date: 24-11-2020
1070
Date: 10-5-2020
682
Date: 11-8-2020
519
|
Let be the set of complex analytic functions defined on an open region containing the set closure of the unit disk satisfying and . For each in , let be the supremum of all numbers such that there is a subregion in on which is one-to-one and such that contains a disk of radius . In 1925, Bloch (Conway 1989) showed that .
Define Bloch's constant by
(1) |
Ahlfors and Grunsky (1937) derived
(2) |
Bonk (1990) proved that , which was subsequently improved to (Chen and Gauthier 1996; Xiong 1998; Finch 2003, p. 456).
Ahlfors and Grunsky (1937) also conjectured that the upper limit is actually the value of ,
(3) |
|||
(4) |
|||
(5) |
(OEIS A085508; Le Lionnais 1983).
REFERENCES:
Ahlfors, L. V. and Grunsky, H. "Über die Blochsche Konstante." Math. Zeit. 42, 671-673, 1937.
Bonk, M. "On Bloch's Constant." Proc. Amer. Math. Soc. 110, 889-894, 1990.
Chen, H. and Gauthier, P. M. "On Bloch's Constant." J. d'Analyse Math. 69, 275-291, 1996.
Conway, J. B. Functions of One Complex Variable I, 2nd ed. New York: Springer-Verlag, 1989.
Finch, S. R. "Bloch-Landau Constants." §7.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 456-459, 2003.
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 25, 1983.
Minda, C. D. "Bloch Constants." J. d'Analyse Math. 41, 54-84, 1982.
Sloane, N. J. A. Sequence A085508 in "The On-Line Encyclopedia of Integer Sequences."
Xiong, C. "Lower Bound of Bloch's Constant." Nanjing Daxue Xuebao Shuxue Bannian Kan 15, 174-179, 1998.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|