Read More
Date: 7-11-2020
1207
Date: 19-3-2020
525
Date: 22-11-2020
1829
|
Ball tetrahedron picking is the selection of quadruples of points (corresponding to vertices of a general tetrahedron) randomly placed inside a ball. random tetrahedra can be picked in a unit ball in the Wolfram Language using the function RandomPoint[Ball[], n, 4].
The mean tetrahedron volume of a tetrahedron formed by four random points in a unit ball is
(OEIS A093591; Hostinsky 1925; Solomon 1978, p. 124; Zinani 2003).
REFERENCES:
Groemer, H. "On Some Mean Values Associated with a Randomly Selected Simplex in a Convex Set." Pacific J. Math. 45, 525-533, 1973.
Hostinsky, B. "Sur les probabilités géométriques." Publ. Fac. Sci. Univ. Masaryk, No. 50. Brno, Czechoslovakia, 1925.
Kingman, J. F. C. "Random Secants of a Convex Body." J. Appl. Prob. 6, 660-672, 1969.
Sloane, N. J. A. Sequence A093591 in "The On-Line Encyclopedia of Integer Sequences."
Solomon, H. Geometric Probability. Philadelphia, PA: SIAM, 1978.
Zinani, A. "The Expected Volume of a Tetrahedron Whose Vertices are Chosen at Random in the Interior of a Cube." Monatshefte Math. 139, 341-348, 2003.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|