Hofstadter Sequences
المؤلف:
Guy, R. K.
المصدر:
"Three Sequences of Hofstadter." §E31 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag
الجزء والصفحة:
...
28-10-2020
1236
Hofstadter Sequences
Let
and
and for
, let
be the least integer
which can be expressed as the sum of two or more consecutive terms. The resulting sequence is 1, 2, 3, 5, 6, 8, 10, 11, 14, 16, ... (OEIS A005243). Let
and
, form all possible expressions of the form
for
, and append them. The resulting sequence is 2, 3, 5, 9, 14, 17, 26, 27, ... (OEIS A005244).
REFERENCES:
Guy, R. K. "Three Sequences of Hofstadter." §E31 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 231-232, 1994.
Sloane, N. J. A. Sequences A005243/M0623 and A005244/M0705 in "The On-Line Encyclopedia of Integer Sequences."
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة