المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

قراءة القرآن والاستماع اليه
2024-03-14
مزايا تفسير الميزان للسيد الطباطبائي
9-11-2020
كرة النار fire ball
2-5-2019
تكافئ التكلفة والطاقة
8-2-2016
شروط الخطبتين في صلاة الجمعة.
17-1-2016
مـرونـات الطـلـب - انـواعـها ودرجـاتـهـا
2023-04-27

Golden Ratio  
  
2720   05:38 مساءً   date: 19-1-2020
Author : Bogomolny, A
Book or Source : "Golden Ratio in Geometry." http://www.cut-the-knot.org/do_you_know/GoldenRatio.shtml.
Page and Part : ...


Read More
Date: 6-12-2020 775
Date: 25-3-2020 703
Date: 28-11-2020 798

Golden Ratio

 

The golden ratio, also known as the divine proportion, golden mean, or golden section, is a number often encountered when taking the ratios of distances in simple geometric figures such as the pentagon, pentagram, decagon and dodecahedron. It is denoted phi, or sometimes tau.

The designations "phi" (for the golden ratio conjugate 1/phi) and "Phi" (for the larger quantity phi) are sometimes also used (Knott), although this usage is not necessarily recommended.

The term "golden section" (in German, goldener Schnitt or der goldene Schnitt) seems to first have been used by Martin Ohm in the 1835 2nd edition of his textbook Die Reine Elementar-Mathematik (Livio 2002, p. 6). The first known use of this term in English is in James Sulley's 1875 article on aesthetics in the 9th edition of the Encyclopedia Britannica. The symbol phi ("phi") was apparently first used by Mark Barr at the beginning of the 20th century in commemoration of the Greek sculptor Phidias (ca. 490-430 BC), who a number of art historians claim made extensive use of the golden ratio in his works (Livio 2002, pp. 5-6). Similarly, the alternate notation tau is an abbreviation of the Greek tome, meaning "to cut."

In the Season 1 episode "Sabotage" (2005) of the television crime drama NUMB3RS, math genius Charlie Eppes mentions that the golden ratio is found in the pyramids of Giza and the Parthenon at Athens. Similarly, the character Robert Langdon in the novel The Da Vinci Code makes similar such statements (Brown 2003, pp. 93-95). However, claims of the significance of the golden ratio appearing prominently in art, architecture, sculpture, anatomy, etc., tend to be greatly exaggerated.

phi has surprising connections with continued fractions and the Euclidean algorithm for computing the greatest common divisor of two integers.

GoldenRatio

Given a rectangle having sides in the ratio 1:xphi is defined as the unique number x such that partitioning the original rectangle into a square and new rectangle as illustrated above results in a new rectangle which also has sides in the ratio 1:x (i.e., such that the yellow rectangles shown above are similar). Such a rectangle is called a golden rectangle, and successive points dividing a golden rectangle into squares lie on a logarithmic spiral, giving a figure known as a whirling square.

Based on the above definition, it can immediately be seen that

 phi/1=1/(phi-1),

(1)

giving

 phi^2-phi-1=0.

(2)

GoldenRatioExtremeAndMean

Euclid ca. 300 BC gave an equivalent definition of phi by defining it in terms of the so-called "extreme and mean ratios" on a line segment, i.e., such that

 phi=(AC)/(CB)=(AB)/(AC)

(3)

for the line segment AB illustrated above (Livio 2002, pp. 3-4). Plugging in,

 (phi+1)/phi=phi,

(4)

and clearing denominators gives

 phi^2-phi-1=0,

(5)

which is exactly the same formula obtained above (and incidentally means that phi is an algebraic number of degree 2.) Using the quadratic equation and taking the positive sign (since the figure is defined so that phi>1) gives the exact value of phi, namely

phi = 1/2(1+sqrt(5))

(6)

= 1.618033988749894848204586834365638117720...

(7)

(OEIS A001622). Prime numbers appearing in consecutive digits of the decimal expansion (starting with the first) are known as phi-primes.

In an apparent blatant misunderstanding of the difference between an exact quantity and an approximation, the character Robert Langdon in the novel The Da Vinci Code incorrectly defines the golden ratio to be exactly 1.618 (Brown 2003, pp. 93-95).

The legs of a golden triangle (an isosceles triangle with a vertex angle of 36 degrees) are in a golden ratio to its base and, in fact, this was the method used by Pythagoras to construct phi. The ratio of the circumradius to the length of the side of a decagon is also phi,

 R/s=1/2csc(pi/(10))=1/2(1+sqrt(5))=phi.

(8)

Bisecting a (schematic) Gaullist cross also gives a golden ratio (Gardner 1961, p. 102).

Exact trigonometric formulas for phi include

phi = 2cos(pi/5)

(9)

= 1/2sec((2pi)/5)

(10)

= 1/2csc(pi/(10)).

(11)

The golden ratio is given by the series

 phi=(13)/8+sum_(n=0)^infty((-1)^(n+1)(2n+1)!)/((n+2)!n!4^(2n+3))

(12)

(B. Roselle). Another fascinating connection with the Fibonacci numbers is given by the series

 phi=1+sum_(n=1)^infty((-1)^(n+1))/(F_nF_(n+1)).

(13)

A representation in terms of a nested radical is

 phi=sqrt(1+sqrt(1+sqrt(1+sqrt(1+...))))

(14)

(Livio 2002, p. 83). This is equivalent to the recurrence equation

 a_n^2=a_(n-1)+1

(15)

with a_1=1, giving lim_(n->infty)a_n=phi.

phi is the "worst" real number for rational approximation because its continued fraction representation

phi = [1,1,1,...]

(16)

= 1+1/(1+1/(1+1/(1+...)))

(17)

(OEIS A000012; Williams 1979, p. 52; Steinhaus 1999, p. 45; Livio 2002, p. 84) has the smallest possible term (1) in each of its infinitely many denominators, thus giving convergents that converge more slowly than any other continued fraction. In particular, the convergents x_n=p_n/q_n are given by the quadratic recurrence equation

 x_n=1+1/(x_(n-1)),

(18)

with x_1=1, which has solution

 x_n=(F_(n+1))/(F_n),

(19)

where F_n is the nth Fibonacci number. This gives the first few convergents as 1, 2, 3/2, 5/3, 8/5, 13/8, 21/13, 34/21, ... (OEIS A000045 and A000045), which are good to 0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 5, ... (OEIS A114540) decimal digits, respectively.

As a result,

 phi=lim_(n->infty)x_n=lim_(n->infty)(F_n)/(F_(n-1)),

(20)

as first proved by Scottish mathematician Robert Simson in 1753 (Wells 1986, p. 62; Livio 2002, p. 101).

The golden ratio also satisfies the recurrence relation

 phi^n=phi^(n-1)+phi^(n-2).

(21)

Taking n=1 gives the special case

 phi=phi^(-1)+1.

(22)

Treating (21) as a linear recurrence equation

 phi(n)=phi(n-1)+phi(n-2)

(23)

in phi(n)=phi^n, setting phi(0)=1 and phi(1)=phi, and solving gives

 phi(n)=phi^n,

(24)

as expected. The powers of the golden ratio also satisfy

 phi^n=F_nphi+F_(n-1),

(25)

where F_n is a Fibonacci number (Wells 1986, p. 39).

The sine of certain complex numbers involving phi gives particularly simple answers, for example

sin(ilnphi) = 1/2i

(26)

sin(1/2pi-ilnphi) = 1/2sqrt(5)

(27)

(D. Hoey, pers. comm.).

GoldenRatioRectangle

In the figure above, three triangles can be inscribed in the rectangle ABCD of arbitrary aspect ratio 1:r such that the three right triangles have equal areas by dividing AB and BC in the golden ratio. Then

K_(DeltaADE) = 1/2·r(1+phi)·1=1/2rphi^2

(28)

K_(DeltaBEF) = 1/2·rphi·phi=1/2rphi^2

(29)

K_(DeltaCDF) = 1/2(1+phi)·r=1/2rphi^2,

(30)

which are all equal. The converse is also true, namely if the adjacent sides of a rectangle are divided in any ratio and connected in the same way, then if the areas of the three outer triangles are all equal, both divided sides are in the golden ratio (D. J. Lewis, pers. comm., Jun. 11, 2009).

Recurrence plot of the golden ratio sequence

The substitution system

0 -> 01

(31)

1 -> 0

(32)

gives

 0->01->010->01001->...,

(33)

giving rise to the sequence

 0100101001001010010100100101...

(34)

(OEIS A003849). Here, the zeros occur at positions 1, 3, 4, 6, 8, 9, 11, 12, ... (OEIS A000201), and the ones occur at positions 2, 5, 7, 10, 13, 15, 18, ... (OEIS A001950). These are complementary Beatty sequences generated by |_nphi_| and |_nphi^2_|. This sequence also has many connections with the Fibonacci numbers. It is plotted above (mod 2) as a recurrence plot.

GoldenRatioKhinchinLevy

Let the continued fraction of phi be denoted [a_0;a_1,a_2,...] and let the denominators of the convergents be denoted q_1q_2, ..., q_n. As can be seen from the plots above, the regularity in the continued fraction of phi means that phi is one of a set of numbers of measure 0 whose continued fraction sequences do not converge to Khinchin's constant or the Lévy constant.

The golden ratio has Engel expansion 1, 2, 5, 6, 13, 16, 16, 38, 48, 58, 104, ... (OEIS A028259).

GoldenRatioIntervals

Steinhaus (1999, pp. 48-49) considers the distribution of the fractional parts of nphi in the intervals bounded by 0, 1/n2/n, ..., (n-1)/n, 1, and notes that they are much more uniformly distributed than would be expected due to chance (i.e., frac(nphi) is close to an equidistributed sequence). In particular, the number of empty intervals for n=1, 2, ..., are a mere 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 2, 2, ... (OEIS A036414). The values of n for which no bins are left blank are then given by 1, 2, 3, 4, 5, 6, 8, 10, 13, 16, 21, 34, 55, 89, 144, ... (OEIS A036415). Steinhaus (1983) remarks that the highly uniform distribution has its roots in the continued fraction for phi.

The sequence {frac(x^n)}, of power fractional parts, where frac(x) is the fractional part, is equidistributed for almost all real numbers x>1, with the golden ratio being one exception.

Salem showed that the set of Pisot numbers is closed, with phi the smallest accumulation point of the set (Le Lionnais 1983).


REFERENCES:

Bogomolny, A. "Golden Ratio in Geometry." http://www.cut-the-knot.org/do_you_know/GoldenRatio.shtml.

Boyer, C. B. History of Mathematics. New York: Wiley, p. 56, 1968.

Brown, D. The Da Vinci Code. New York: Doubleday, 2003.

Coxeter, H. S. M. "The Golden Section, Phyllotaxis, and Wythoff's Game." Scripta Mathematica 19, 135-143, 1953.

Dixon, R. Mathographics. New York: Dover, pp. 30-31 and 50, 1991.

Finch, S. R. "The Golden Mean." §1.2 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 5-12, 2003.

Gardner, M. "Phi: The Golden Ratio." Ch. 8 in The Second Scientific American Book of Mathematical Puzzles & Diversions, A New Selection. New York: Simon and Schuster, pp. 89-103, 1961.

Gardner, M. "Notes on a Fringe-Watcher: The Cult of the Golden Ratio." Skeptical Inquirer 18, 243-247, 1994.

Hambridge, J. The Elements of Dynamic Stability. New York: Dover, 1967.

Herz-Fischler, R. A Mathematical History of the Golden Number. New York: Dover, 1998.

Hofstetter, K. "A Simple Construction of the Golden Ratio." Forum Geom. 2, 65-66, 2002. http://forumgeom.fau.edu/FG2002volume2/FG200208index.html.

Hofstetter, K. "A 4-Step Construction of the Golden Ratio." Forum Geom. 6, 179-180, 2006. http://forumgeom.fau.edu/FG2006volume6/FG200618index.html.

Huntley, H. E. The Divine Proportion. New York: Dover, 1970.

Knott, R. "Fibonacci Numbers and the Golden Section." http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/.

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 40, 1983.

Livio, M. The Golden Ratio: The Story of Phi, the World's Most Astonishing Number. New York: Broadway Books, 2002.

Markowsky, G. "Misconceptions About the Golden Ratio." College Math. J. 23, 2-19, 1992.

Ogilvy, C. S. Excursions in Geometry. New York: Dover, pp. 122-134, 1990.

Ohm, M. die Reine Elementar-Mathematik. Berlin: Jonas Veilags-Buchhandlung, 1835.

Olariu, A. "Golden Section and the Art of Painting." 18 Aug 1999. http://arxiv.org/abs/physics/9908036.

Pappas, T. "Anatomy & the Golden Section." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, pp. 32-33, 1989.

Saaty, T. L. and Kainen, P. C. The Four-Color Problem: Assaults and Conquest. New York: Dover, p. 148, 1986.

Sloane, N. J. A. Sequences A000012/M0003, A000201/M2322, A001622/M4046, A001950/M1332, A003849, A028259, A036414, A036415, and A114540 in "The On-Line Encyclopedia of Integer Sequences."

Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, p. 45, 1999.

Trott, M. The Mathematica GuideBook for Programming. New York: Springer-Verlag, p. 175, 2004. http://www.mathematicaguidebooks.org/.

van Zanten, A. J. "The Golden Ratio in the Arts of Painting, Building, and Mathematics." Nieuw Arch. Wisk. 17, 229-245, 1999.

Walser, R. Der Goldene Schnitt. Stuttgart, Germany: Teubner, 1993.

Weisstein, E. W. "Books about Golden Ratio." http://www.ericweisstein.com/encyclopedias/books/GoldenRatio.html.

Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, pp. 36-49, 1986.

Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, pp. 87-88, 1991.

Williams, R. "The Golden Proportion." §2-7 in The Geometrical Foundation of Natural Structure: A Source Book of Design. New York: Dover, pp. 52-53, 1979.

Zeising, A. Neue Lehre von den Proportionen des menschlichen Körpers, aus einem bisher unerkannt gebliebenen, die ganze Natur und Kunst durchdringenden morphologischen Grundgesetze entwickelt und mit einer vollständigen historischen Uebersicht der bisherigen Systeme begleitet. Leipzig, Germany: Weigel, 1854.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.