المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

التظهير بعد ميعاد الاستحقاق
30-4-2017
حماية الاسم التجاري
14-3-2016
مقاوم رُقاقي chip resistor
16-4-2018
القدرة - الشيخ أبو الصلاح تقي بن نجم الحلبي
3-10-2014
تصميمات لسد الاحتياجات الكهربائية وقت الذروة
24-7-2021
ثمار البن
2023-03-21

Almost Integer  
  
759   02:51 صباحاً   date: 2-4-2020
Author : Berndt, B. C.
Book or Source : Ramanujan,s Notebooks, Part IV. New York: Springer-Verlag
Page and Part : ...


Read More
Date: 8-12-2020 857
Date: 4-3-2020 962
Date: 9-1-2020 677

Almost Integer

An almost integer is a number that is very close to an integer.

Surprising examples are given by

 sin(11)=-0.999990206...,

(1)

which equals -1 to within 5 digits and

 sin(2017RadicalBox[2, 5])=-0.9999999999999999785...,

(2)

which equals -1 to within 16 digits (M. Trott, pers. comm., Dec. 7, 2004). The first of these comes from the half-angle formula identity

 sin^211=1/2(1-cos22),

(3)

where 22 is the numerator of the convergent 22/7 to pi, so cos22 approx cos(7pi)=cospi= approx -1. It therefore follows that any pi approximation x gives a near-identity of the form cosx approx -1.

Another surprising example involving both e and pi is

 e^pi-pi=19.999099979...,

(4)

which can also be written as

(pi+20)^i = -0.9999999992-0.0000388927i

(5)

cos(ln(pi+20))  approx -0.9999999992.

(6)

Here, e^pi is Gelfond's constant. Applying cosine a few more times gives

 cos(picos(picos(ln(pi+20)))) approx -1+3.9321609261×10^(-35).

(7)

This curious near-identity was apparently noticed almost simultaneously around 1988 by N. J. A. Sloane, J. H. Conway, and S. Plouffe, but no satisfying explanation as to "why" e^pi-pi approx 20 is true has yet been discovered.

Another nested cosine almost integer is given by

 2cos(cos(cos(cos(cos(cos(cos5))))))^2 
 =0.999995254797000...

(8)

(P. Rolli, pers. comm., Feb. 19, 2004).

An example attributed to Ramanujan is

 22pi^4=2143+2.748...×10^(-6).

(9)

Some near-identities involving integers and the logarithm are

510log_(10)7 = 431.00000040...

(10)

88ln89 = 395.00000053...

(11)

272log_pi97 = 1087.000000204...,

(12)

which are good to 6, 6, and 6 decimal digits, respectively (K. Hammond, pers. comm., Jan. 4 and Mar. 23-24, 2006).

An interesting near-identity is given by

 1/4[cos(1/(10))+cosh(1/(10))+2cos(1/(20)sqrt(2))cosh(1/(20)sqrt(2))]=1+2.480...×10^(-13)

(13)

(W. Dubuque, pers. comm.).

Near-identities involving e and pi are given by

 e^6-pi^4-pi^5=0.000017673...

(14)

(D. Wilson, pers. comm.),

 (pi^9)/(e^8)=9.9998387...

(15)

(D. Ehlke, pers. comm., Apr. 7, 2005),

 10tanh((28)/(15)pi)-(pi^9)/(e^8) approx 6.005×10^(-9)

(16)

(Povolotsky, pers. comm., May 11, 2008), and

 (e^pi-ln3)/(ln2)-4/5=31.0000000033...

(17)

(good to 8 digits; M. Stay, pers. comm., Mar. 17, 2009), or equivalently

 (10(e^pi-ln3))/(ln2)=318.000000033...,

(18)

Other remarkable near-identities are given by

 (5(1+sqrt(5))[Gamma(3/4)]^2)/(e^(5pi/6)sqrt(pi))=1+4.5422...×10^(-14),

(19)

where Gamma(z) is the gamma function (S. Plouffe, pers. comm.),

 ln2+log_(10)2=0.994177...

(20)

(D. Davis, pers. comm.),

 (163)/(ln163)=31.9999987384...

(21)

(posted to sci.math; origin unknown),

 eC^(5/7-gamma)pi^(-(2/7+gamma)) approx 1.00014678

(22)

 (C^(gamma-19/7)pi^(2/7+gamma))/(2phi) approx 1.00105

(23)

 egammaphi(Cpi)^(-(2/7+gamma)) approx 1.01979,

(24)

where C is Catalan's constant, gamma is the Euler-Mascheroni constant, and phi is the golden ratio (D. Barron, pers. comm.), and

 163(pi-e)=68.999664...

(25)

 (53453)/(ln53453)=4910.00000122...

(26)

[(2-1)^2+((5^2-1)^2)/(6^2+1)]e-[(2+1)^2+((5^2+1)^2)/(6^2-1)]^(-1) = (613)/(37)e-(35)/(991)

(27)

= 44.99999999993962...

(28)

(E. Stoschek, pers. comm.). Stoschek also gives an interesting near-identity involving the fine structure constant alpha and Feigenbaum constant delta,

 (28-delta^(-1))(alpha^(-1)-137) approx 0.999998.

(29)

E. Pegg Jr. (pers. comm., Mar. 4, 2002) discovered the interesting near-identities

 ((91)/(10))^(1/4)-(33)/(19)=3.661378...×10^(-8)

(30)

and

 ((23)/9)^5=(6436343)/(59049) approx 109.00003387.

(31)

The near-identity

 3sqrt(2)(sqrt(5)-2)=1.0015516...

(32)

arises by noting that the augmentation ratio (r+h)/h=3(sqrt(5)-2) in the augmentation of the dodecahedron to form the great dodecahedron is approximately equal to 1/sqrt(2). Another near identity is given by

 zeta(3) approx gamma^(-1/3)+pi^(-1/4)(1+2gamma-2/(130+pi^2))^(-3),

(33)

where zeta(3) is Apéry's constant and gamma is the Euler-Mascheroni constant, which is accurate to four digits (P. Galliani, pers. comm., April 19, 2002).

J. DePompeo (pers. comm., Mar. 29, 2004) found

 (5phie)/(7pi)=1.0000097...,

(34)

which is equal to 1 to five digits.

M. Hudson (pers. comm., Oct. 18, 2004) noted the almost integer

 lnK-lnlnK=1.0000744...,

(35)

where K is Khinchin's constant, as well as

 (sqrt(45))^gamma=3.000060964...,

(36)

(pers. comm., Feb. 4, 2005), where gamma is the Euler-Mascheroni constant.

M. Joseph found

 erfi(erfi(1/3sqrt(3)))=1.0000208...,

(37)

which is equal to 1 to four digits (pers. comm., May 18, 2006). M. Kobayashi (pers. comm., Sept. 17, 2004) found

 10(gamma^(-1/2)-1)^2=0.9999980...,

(38)

which is equal to 1 to five digits. The related expression

 (10)/(81)(11-2sqrt(10))-gamma=-2.72×10^(-7),

(39)

which is equal to 0 to six digits (E. Pegg Jr., pers. comm., Sept. 28, 2004). S. M. Edde (pers. comm., Sep. 7, 2007) noted that

 exp[-psi_0(1/4(2+sqrt(3)))]=1.99999969...,

(40)

where psi_0(x) is the digamma function.

E. W. Weisstein (Mar. 17, 2003) found the almost integers

2.78768×10^(-6)  approx 7/(64)ln2-(131)/(1728)

(41)

2.84186×10^(-6)  approx (80497)/(40320)-(43)/(144)pi^2+(3293)/(1260)ln2-(43)/(24)(ln2)^2

(42)

9.80710×10^(-6)  approx (2411287)/(30240)-(100)/9pi^2+(1877)/(21)ln2-(200)/3(ln2)^2

(43)

as individual integrals in the decomposition of the integration region to compute the average area of a triangle in triangle triangle picking.

ln2 and 3^(1/3) give the almost integer

 1/(3^(1/3)ln2)=1.00030887...

(44)

(E. W. Weisstein, Feb. 5, 2005).

Prudnikov et al. (1986, p. 757) inadvertently give an almost integer result by incorrectly identifying the infinite product

 product_(k=1)^infty(1-e^(-2pik/sqrt(3)))=(e^(-2pi/sqrt(3)))_infty,

(45)

where (q)_infty is a q-Pochhammer symbol, as being equal 3^(1/4)e^(-pi/(6sqrt(3))), which differs from the correct result by

 3^(1/4)e^(-pi/(6sqrt(3)))-(e^(-2pi/sqrt(3)))_infty approx 1.82668×10^(-5).

(46)

A much more obscure almost identity related to the eight curve is the location of the jump in

 Pi(1/2i(i+sqrt(7));isinh^(-1)(sqrt(-(2i)/(i+sqrt(7)))tant),k),

(47)

where

 k=sqrt((i+sqrt(7))/(i-sqrt(7)))

(48)

and Pi(n;phi,k) is an elliptic integral of the third kind, which is 1.3333292798..., or within 4.1×10^(-6) of 4/3 (E. W. Weisstein, Apr. 2006). Another slightly obscure one is the value of x needed to give a 99.5% confidence interval for a Student's t-distribution with sample size 30, which is 2.7499956..., or within 4.4×10^(-6) of 11/4 (E. W. Weisstein, May 2, 2006).

Let l^_ be the average length of a line in triangle line picking for an isosceles right triangle, then

 l^_=1/(30)[2+4sqrt(2)+(4+sqrt(2))sinh^(-1)1] approx 0.4142933026,

(49)

which is within 8×10^(-5) of sqrt(2)-1=0.4142135624....

D. Terr (pers. comm., July 29, 2004) found the almost integer

 phi/(2^(ln2))=1.0007590...,

(50)

where phi is the golden ratio and ln2 is the natural logarithm of 2.

A set of almost integers due to D. Hickerson are those of the form

 h_n=(n!)/(2(ln2)^(n+1))

(51)

for 1<=n<=17, as summarized in the following table.

n h_n
0 0.72135
1 1.04068
2 3.00278
3 12.99629
4 74.99874
5 541.00152
6 4683.00125
7 47292.99873
8 545834.99791
9 7087261.00162
10 102247563.00527
11 1622632572.99755
12 28091567594.98157
13 526858348381.00125
14 10641342970443.08453
15 230283190977853.03744
16 5315654681981354.51308
17 130370767029135900.45799

These numbers are close to integers due to the fact that the quotient is the dominant term in an infinite series for the number of possible outcomes of a race between n people (where ties are allowed). Calling this number f(n), it follows that

 f(n)=sum_(k=1)^n(n; k)f(n-k)

(52)

with f(0)=1, where (n; k) is a binomial coefficient. From this, we obtain the exponential generating function for f

 sum_(n=0)^infty(f(n))/(n!)z^n=1/(2-e^z),

(53)

and then by contour integration it can be shown that

 f(n)=1/2(-1)^(n+1)n!sum_(k=-infty)^infty1/((ln2+2piik)^(n+1))

(54)

for n>=1, where i is the square root of -1 and the sum is over all integers k (here, the imaginary parts of the terms for k and -k cancel each other, so this sum is real). The k=0 term dominates, so f(n) is asymptotic to n!/(2(ln2)^(n+1)). The sum can be done explicitly as

 f(n)=((-1)^(n+1)in!)/(pi^(n+1)2^(n+2))[i^nzeta(n+1,1+(iln2)/(2pi))-(-i)^nzeta(n+1,-(iln2)/(2pi))],

(55)

where zeta(s,a) is the Hurwitz zeta function. In fact, the other terms are quite small for n from 1 to 15, so f(n) is the nearest integer to n!/(2(ln2)^(n+1)) for these values, given by the sequence 1, 3, 13 75, 541, 4683, ... (OEIS A034172).

A large class of irrational "almost integers" can be found using the theory of modular functions, and a few rather spectacular examples are given by Ramanujan (1913-14). Such approximations were also studied by Hermite (1859), Kronecker (1863), and Smith (1965). They can be generated using some amazing (and very deep) properties of the j-function. Some of the numbers which are closest approximations to integers are e^(pisqrt(163)) (sometimes known as the Ramanujan constant and which corresponds to the field Q(sqrt(-163)) which has class number 1 and is the imaginary quadratic field of maximal discriminant), e^(pisqrt(22))e^(pisqrt(37)), and e^(pisqrt(58)), the last three of which have class number 2 and are due to Ramanujan (Berndt 1994, Waldschmidt 1988ab).

The properties of the j-function also give rise to the spectacular identity

 [(ln(640320^3+744))/pi]^2=163+2.32167...×10^(-29)

(56)

(Le Lionnais 1983, p. 152; Trott 2004, p. 8).

The list below gives numbers of the form x=e^(pisqrt(n)) for n<=1000 for which |nint(x)-x|<=10^(-3).

n |nint(x)-x|
25 -0.00066
37 -0.000022
43 -0.00022
58 -1.8×10^(-7)
67 -1.3×10^(-6)
74 -0.00083
148 0.00097
163 -7.5×10^(-13)
232 -7.8×10^(-6)
268 0.00029
522 -0.00015
652 1.6×10^(-10)
719 -0.000013

Gosper (pers. comm.) noted that the expression

 1-262537412640768744e^(-pisqrt(163))-196884e^(-2pisqrt(163))+103378831900730205293632e^(-3pisqrt(163)).

(57)

differs from an integer by a mere 1.6×10^(-59).

AlmostIntegerTriangleDissection

E. Pegg Jr. noted that the triangle dissection illustrated above has length

d = 1/2sqrt(1/(30)(61421-23sqrt(5831385)))

(58)

= 7+8.574×10^(-8),

(59)

which is almost an integer.

Borwein and Borwein (1992) and Borwein et al. (2004, pp. 11-15) give examples of series identities that are nearly true. For example,

 sum_(n=1)^infty(|_ntanhpi_|)/(10^n)=1/(81)-1.11...×10^(-269)

(60)

which is true since tanhpi=0.9962... and |_ntanhpi_|=n-1 for positive integer n<268. In fact, the first few doubled values of n at which |_ntanhpi_|=|_(n+1)tanhpi_| are 268, 536, 804, 1072, 1341, 1609, ...(OEIS A096613).

An example of a (very) near-integer is

sum_(k=-infty)^(infty)1/(10^((k/100)^2)) = theta_3(0,10^(-1/10000))

(61)

 approx 100sqrt(pi/(ln10))+1.3809×10^(-18613)

(62)

(Borwein and Borwein 1992; Maze and Minder 2005).

Maze and Minder (2005) found the class of near-identities obtained from

 u_k=ln2sum_(n=-infty)^infty1/((2^(k/2)+2^(-k/2))^n)

(63)

as

u_1 = 3.14159265359518238328842...

(64)

= pi+5.3...×10^(-12)

(65)

u_2 = 1.00000000004885109041382...

(66)

= 1+4.8...×10^(-11)

(67)

u_3 = pi/(2^3)+2.2...×10^(-10)

(68)

u_4 = 1/6+6.7...×10^(-10)

(69)

u_5 = (3pi)/(2^7)+1.5...×10^(-9)

(70)

u_6 = 1/(30)+2.9...×10^(-9)

(71)

(OEIS A114609 and A114610). Here, the excesses can be computed as exact sums connected by a recurrence relation, with the first few being

r_1 = 2pisum_(k=1)^(infty)sech((2kpi^2)/(ln2))

(72)

r_2 = (2pi)/(ln2)sum_(k=1)^(infty)2kpicsch((2kpi^2)/(ln2))

(73)

(Maze and Minder 2005). These sums can also be done in closed form using q-polygamma functions psi_q^((k))(z), giving for example

r_1 = -2ipsi_(sqrt(2))(-ipil_2)-2ipsi_(sqrt(2))(ipil_2)-1/2l_2^(-1)-3pi

(74)

r_2 = -2l_2psi_(sqrt(2))^((1))(-ipil_2)-2l_2psi_(sqrt(2))^((1))(ipil_2)-1/4l_2^(-1)+1,

(75)

with l_2=ln2.

An amusing almost integer involving units of length is given by

 (inches/mile)/(astronomical units/light year)=0.99812....

(76)

If combinations of physical and mathematical constants are allowed and taken in SI units, the following quantities have a near-integer numeric prefactor

(cek)/h = 1.0008m A/(s K)

(77)

(P_b+7/9)(epsilon_0R_infty^2) = 1000F/m^3

(78)

(M. Trott, pers. comm. Apr. 28, 2011), the first of which was apparently noticed by Weisskopf. Here, c is the speed of light, e is the elementary charge, k is Boltzmann's constant, h is Planck's constant, P_b is the bond percolation threshold for a 4-dimensional hypercube lattice, epsilon_0 is the vacuum permittivity, and R_infty is the Rydberg constant. Another famous example of this sort is Wyler's constant, which approximates the (dimensionless) fine structure constant in terms of fundamental mathematical constants.


REFERENCES:

Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, pp. 90-91, 1994.

Borwein, J.; Bailey, D.; and Girgensohn, R. "High Precision Fraud." §1.4 in Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, pp. 11-15, 2004.

Borwein, J. M. and Borwein, P. B. "Strange Series and High Precision Fraud." Amer. Math. Monthly 99, 622-640, 1992.

Cohen, H. "Elliptic Curves." In From Number Theory to Physics (Ed. M. Waldschmidt, P. Moussa, J.-M. Luck, and C. Itzykson). New York: Springer-Verlag, pp. 212-237, 1992.

Hermite, C. "Sur la théorie des équations modulaires." Comptes Rendus Acad. Sci. Paris 48, 1079-1084 and 1095-1102, 1859.

Hermite, C. "Sur la théorie des équations modulaires." Comptes Rendus Acad. Sci. Paris 49, 16-24, 110-118, and 141-144, 1859.

Kronecker, L. "Über die Klassenzahl der aus Wurzeln der Einheit gebildeten komplexen Zahlen." Monatsber. K. Preuss. Akad. Wiss. Berlin, 340-345. 1863.

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 1983.

Maze, G. and Minder, L. "A New Family of Almost Identities." 28 Jun 2005. https://www.arxiv.org/abs/math.GM/0409014/.

Pegg, E. Jr. https://www.mathpuzzle.com/WIWWTP.gif.

Pegg, E. Jr. "Math Games: Keen Approximations." Feb. 14, 2005. https://www.maa.org/editorial/mathgames/mathgames_02_14_05.html.

Prudnikov, A. P.; Brychkov, Yu. A.; and Marichev, O. I. Integrals and Series, Vol. 1: Elementary Functions. New York: Gordon & Breach, 1986.

Ramanujan, S. "Modular Equations and Approximations to pi." Quart. J. Pure Appl. Math. 45, 350-372, 1913-14.

Roberts, J. The Lure of the Integers. Washington, DC: Math. Assoc. Amer., 1992.

Sloane, N. J. A. Sequences A034172, A096613, A114609, and A114610 in "The On-Line Encyclopedia of Integer Sequences."

Smith, H. J. S. Report on the Theory of Numbers. New York: Chelsea, 1965.

Stillwell, J. "Modular Miracles." Amer. Math. Monthly 108, 70-76, 2001.

Stoschek, E. "Modul 33: Algames with Numbers." https://marvin.sn.schule.de/~inftreff/modul33/task33.htm.

Trott, M. The Mathematica GuideBook for Programming. New York: Springer-Verlag, 2004. https://www.mathematicaguidebooks.org/.

Waldschmidt, M. "Some Transcendental Aspects of Ramanujan's Work." In Ramanujan Revisited: Proceedings of the Centenary Conference, University of Illinois at Urbana-Champaign, June 1-5, 1987 (Ed. G. E. Andrews, B. C. Berndt, and R. A. Rankin). New York: Academic Press, pp. 57-76, 1988a.

Waldschmidt, M. In Ramanujan Centennial International Conference (Ed. R. Balakrishnan, K. S. Padmanabhan, and V. Thangaraj). Ramanujan Math. Soc., 1988b.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.