Read More
Date: 23-11-2020
![]()
Date: 31-10-2019
![]()
Date: 21-10-2019
![]() |
Let denote the set of the
numbers less than and relatively prime to
, where
is the totient function. Define
![]() |
(1) |
Then a theorem of Lagrange states that
![]() |
(2) |
for an odd prime (Hardy and Wright 1979, p. 98). Actually, this relationship holds for some composite values as well. Value for which it holds are
, 3, 4, 5, 6, 7, 10, 11, 13, 17, 19, 23, 29, ... (OEIS A158008).
This can be generalized as follows. Let be an odd prime divisor of
and
the highest power which divides
, then
![]() |
(3) |
and, in particular,
![]() |
(4) |
Now, if is even and
is the highest power of 2 that divides
, then
![]() |
(5) |
and, in particular,
![]() |
(6) |
REFERENCES:
Bauer. Nouvelles annales 2, 256-264, 1902.
Hardy, G. H. and Wright, E. M. J. London Math. Soc. 9, 38-41 and 240, 1934.
Hardy, G. H. and Wright, E. M. "Bauer's Identical Congruence." §8.5 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 98-100, 1979.
Sloane, N. J. A. Sequence A158008 in "The On-Line Encyclopedia of Integer Sequences."
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
قسم الشؤون الفكرية يعزز مكتبته بفهارس المخطوطات التركية
|
|
|