المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24


Class Number  
  
2050   05:14 مساءً   date: 31-12-2019
Author : Arno, S
Book or Source : "The Imaginary Quadratic Fields of Class Number 4." Acta Arith. 40
Page and Part : ...


Read More
Date: 24-10-2019 664
Date: 10-11-2020 642
Date: 10-7-2020 1125

Class Number

 

For any ideal I in a Dedekind ring, there is an ideal I_i such that

 II_i=z,

(1)

where z is a principal ideal, (i.e., an ideal of rank 1). Moreover, for a Dedekind ring with a finite ideal class group, there is a finite list of ideals I_i such that this equation may be satisfied for some I. The size of this list is known as the class number.

Class numbers are usually studied in the context of the orders of number fields. If this order is maximal, then it is the ring of integers of the number field, in which case the class number is equal to the order of the class group of the number field; otherwise it is equal to the order of the Picard group of the nonmaximal order in question.

When the class number of a ring of integers in a number field is 1, the ring corresponding to a given ideal has unique factorization and, in a sense, the class number is a measure of the failure of unique factorization in that ring.

A finite series giving exactly the class number of a ring is known as a class number formula. A class number formula is known for the full ring of cyclotomic integers, as well as for any subring of the cyclotomic integers. Finding the class number is a computationally difficult problem.

The Wolfram Language function NumberFieldClassNumber[Sqrt[d]] gives the class number h(d) for d a fundamental discriminant.

The class number h(d) of an order of a quadratic field with discriminant d<0 is equal to the number of reduced binary quadratic forms of discriminant d. For example, the class number h(-23) of the ring of integers Z((1+sqrt(-23))/2) of the number field Q(-sqrt(23)) is equal to 3 since there are three reduced binary quadratic forms of discriminant -23, namely <1,1,6><2,1,3>, and <2,-1,3>. An inefficient way to compute the class number h(d) of the unique order of the quadratic number field Q(sqrt(d)) with discriminant d<0 is to count the number of reduced binary quadratic forms with discriminant d.

Some fairly sophisticated mathematics shows that the class number for discriminant d can be given by the class number formula

 h(d)={-1/(2lneta(d))sum_(r=1)^(d-1)(d/r)lnsin((pir)/d)   for d>0; -(w(d))/(2|d|)sum_(r=1)^(|d|-1)(d/r)r   for d<0,

(2)

where (d/r) is the Kronecker symbol, eta(d) is the fundamental unit, w(d) is the number of substitutions which leave the binary quadratic form unchanged

 w(d)={6   for d=-3; 4   for d=-4; 2   otherwise,

(3)

and the sums are taken over all terms where the Kronecker symbol is defined (Cohn 1980). The class number for d>0 can also be written

 eta^(2h(d))=product_(r=1)^(d-1)sin^(-(d/r))((pir)/d)

(4)

for d>0, where the product is taken over terms for which the Kronecker symbol is defined.

The class number h(d) is related to the Dirichlet L-series by

 h(d)=(L_d(1))/(kappa(d)),

(5)

where kappa(d) is the Dirichlet structure constant.

Oesterlé (1985) showed that class number h(-d) satisfies the inequality

 h(-d)>1/(7000)product_(p|d)^*(1-(|_2sqrt(p)_|)/(p+1))lnd,

(6)

for -d<0, where |_x_| is the floor function, the product is over primes dividing d, and the * indicates that the greatest prime factor of d is omitted from the product. It is also known that if d is relatively prime to 5077, then the denominator 7000 in (6) can be replaced by 55.

Gauss's class number problem asks to determine a complete list of fundamental binary quadratic form discriminants -d such that the class number is given by h(-d)=n for a given n. This problem has been solved for n<=7 and odd n<=23. Gauss conjectured that the class number h(-d) of an imaginary quadratic field with binary quadratic form discriminant -d tends to infinity with d, an assertion now known as Gauss's class number conjecture.

The negated discriminants d corresponding to imaginary quadratic fields are 3, 4, 7, 8, 11, 15, 19, 20, 23, 24, 31, 35, 39, 40, 43, ... (OEIS A003657), which have corresponding class numbers h(-d)=1, 1, 1, 1, 1, 2, 1, 2, 3, 2, 3, 2, 4, 2, 1, ... (OEIS A006641).

The complete set of negative discriminants having class numbers 1-5 and odd 7-23 are known. Buell (1977) gives the smallest and largest class numbers for fundamental discriminants with d<4000000, partitioned into even discriminants, discriminants 1 (mod 8), and discriminants 5 (mod 8). Arno et al. (1993) give complete lists of values of fundamental d with h(-d)=k for odd k=5, 7, 9, ..., 23. Wagner (1996) gives complete lists of values for k=5, 6, and 7. Lists of negative fundamental discriminants corresponding to imaginary quadratic fields Q(sqrt(-d(n))) having small class numbers h(-d) are given in the table below. In the table, N is the number of fundamental values of -d with a given class number h(-d), where "fundamental" means that -d is not divisible by any square number s^2 such that h(-d/s^2)<h(-d). For example, although h(-63)=2-63 is not a fundamental discriminant since 63=3^2·7 and h(-63/3^2)=h(-7)=1<h(-63). Even values 8<=h(-d)<=24 have been computed by Weisstein.

The following table lists the fundamental discriminants d having class numbers h<=25 (Cohen 1993, pp. 229 and 514-515; Cox 1997, p. 271). The search was terminated at 50000, 70000, 90000, and 90000 for class numbers 18, 20, 22, and 24, respectively. As far as I know, analytic upper bounds are not currently known for these cases.

h(-d) N Sloane d
1 9 A014602 3, 4, 7, 8, 11, 19, 43, 67, 163
2 18 A014603 15, 20, 24, 35, 40, 51, 52, 88, 91, 115, 123, 148, 187, 232, 235, 267, 403, 427
3 16 A006203 23, 31, 59, 83, 107, 139, 211, 283, 307, 331, 379, 499, 547, 643, 883, 907
4 54 A013658 39, 55, 56, 68, 84, 120, 132, 136, 155, 168, 184, 195, 203, 219, 228, 259, 280, 291, 292, 312, 323, 328, 340, 355, 372, 388, 408, 435, 483, 520, 532, 555, 568, 595, 627, 667, 708, 715, 723, 760, 763, 772, 795, 955, 1003, 1012, 1027, 1227, 1243, 1387, 1411, 1435, 1507, 1555
5 25 A046002 47, 79, 103, 127, 131, 179, 227, 347, 443, 523, 571, 619, 683, 691, 739, 787, 947, 1051, 1123, 1723, 1747, 1867, 2203, 2347, 2683
6 51 A046003 87, 104, 116, 152, 212, 244, 247, 339, 411, 424, 436, 451, 472, 515, 628, 707, 771, 808, 835, 843, 856, 1048, 1059, 1099, 1108, 1147, 1192, 1203, 1219, 1267, 1315, 1347, 1363, 1432, 1563, 1588, 1603, 1843, 1915, 1963, 2227, 2283, 2443, 2515, 2563, 2787, 2923, 3235, 3427, 3523, 3763
7 31 A046004 71, 151, 223, 251, 463, 467, 487, 587, 811, 827, 859, 1163, 1171, 1483, 1523, 1627, 1787, 1987, 2011, 2083, 2179, 2251, 2467, 2707, 3019, 3067, 3187, 3907, 4603, 5107, 5923
8 131 A046005 95, 111, 164, 183, 248, 260, 264, 276, 295, 299, 308, 371, 376, 395, 420, 452, 456, 548, 552, 564, 579, 580, 583, 616, 632, 651, 660, 712, 820, 840, 852, 868, 904, 915, 939, 952, 979, 987, 995, 1032, 1043, 1060, 1092, 1128, 1131, 1155, 1195, 1204, 1240, 1252, 1288, 1299, 1320, 1339, 1348, 1380, 1428, 1443, 1528, 1540, 1635, 1651, 1659, 1672, 1731, 1752, 1768, 1771, 1780, 1795, 1803, 1828, 1848, 1864, 1912, 1939, 1947, 1992, 1995, 2020, 2035, 2059, 2067, 2139, 2163, 2212, 2248, 2307, 2308, 2323, 2392, 2395, 2419, 2451, 2587, 2611, 2632, 2667, 2715, 2755, 2788, 2827, 2947, 2968, 2995, 3003, 3172, 3243, 3315, 3355, 3403, 3448, 3507, 3595, 3787, 3883, 3963, 4123, 4195, 4267, 4323, 4387, 4747, 4843, 4867, 5083, 5467, 5587, 5707, 5947, 6307
9 34 A046006 199, 367, 419, 491, 563, 823, 1087, 1187, 1291, 1423, 1579, 2003, 2803, 3163, 3259, 3307, 3547, 3643, 4027, 4243, 4363, 4483, 4723, 4987, 5443, 6043, 6427, 6763, 6883, 7723, 8563, 8803, 9067, 10627
10 87 A046007 119, 143, 159, 296, 303, 319, 344, 415, 488, 611, 635, 664, 699, 724, 779, 788, 803, 851, 872, 916, 923, 1115, 1268, 1384, 1492, 1576, 1643, 1684, 1688, 1707, 1779, 1819, 1835, 1891, 1923, 2152, 2164, 2363, 2452, 2643, 2776, 2836, 2899, 3028, 3091, 3139, 3147, 3291, 3412, 3508, 3635, 3667, 3683, 3811, 3859, 3928, 4083, 4227, 4372, 4435, 4579, 4627, 4852, 4915, 5131, 5163, 5272, 5515, 5611, 5667, 5803, 6115, 6259, 6403, 6667, 7123, 7363, 7387, 7435, 7483, 7627, 8227, 8947, 9307, 10147, 10483, 13843
11 41 A046008 167, 271, 659, 967, 1283, 1303, 1307, 1459, 1531, 1699, 2027, 2267, 2539, 2731, 2851, 2971, 3203, 3347, 3499, 3739, 3931, 4051, 5179, 5683, 6163, 6547, 7027, 7507, 7603, 7867, 8443, 9283, 9403, 9643, 9787, 10987, 13003, 13267, 14107, 14683, 15667
12 206 A046009 231, 255, 327, 356, 440, 516, 543, 655, 680, 687, 696, 728, 731, 744, 755, 804, 888, 932, 948, 964, 984, 996, 1011, 1067, 1096, 1144, 1208, 1235, 1236, 1255, 1272, 1336, 1355, 1371, 1419, 1464, 1480, 1491, 1515, 1547, 1572, 1668, 1720, 1732, 1763, 1807, 1812, 1892, 1955, 1972, 2068, 2091, 2104, 2132, 2148, 2155, 2235, 2260, 2355, 2387, 2388, 2424, 2440, 2468, 2472, 2488, 2491, 2555, 2595, 2627, 2635, 2676, 2680, 2692, 2723, 2728, 2740, 2795, 2867, 2872, 2920, 2955, 3012, 3027, 3043, 3048, 3115, 3208, 3252, 3256, 3268, 3304, 3387, 3451, 3459, 3592, 3619, 3652, 3723, 3747, 3768, 3796, 3835, 3880, 3892, 3955, 3972, 4035, 4120, 4132, 4147, 4152, 4155, 4168, 4291, 4360, 4411, 4467, 4531, 4552, 4555, 4587, 4648, 4699, 4708, 4755, 4771, 4792, 4795, 4827, 4888, 4907, 4947, 4963, 5032, 5035, 5128, 5140, 5155, 5188, 5259, 5299, 5307, 5371, 5395, 5523, 5595, 5755, 5763, 5811, 5835, 6187, 6232, 6235, 6267, 6283, 6472, 6483, 6603, 6643, 6715, 6787, 6843, 6931, 6955, 6963, 6987, 7107, 7291, 7492, 7555, 7683, 7891, 7912, 8068, 8131, 8155, 8248, 8323, 8347, 8395, 8787, 8827, 9003, 9139, 9355, 9523, 9667, 9843, 10003, 10603, 10707, 10747, 10795, 10915, 11155, 11347, 11707, 11803, 12307, 12643, 14443, 15163, 15283, 16003, 17803
13 37 A046010 191, 263, 607, 631, 727, 1019, 1451, 1499, 1667, 1907, 2131, 2143, 2371, 2659, 2963, 3083, 3691, 4003, 4507, 4643, 5347, 5419, 5779, 6619, 7243, 7963, 9547, 9739, 11467, 11587, 11827, 11923, 12043, 14347, 15787, 16963, 20563
14 95 A046011 215, 287, 391, 404, 447, 511, 535, 536, 596, 692, 703, 807, 899, 1112, 1211, 1396, 1403, 1527, 1816, 1851, 1883, 2008, 2123, 2147, 2171, 2335, 2427, 2507, 2536, 2571, 2612, 2779, 2931, 2932, 3112, 3227, 3352, 3579, 3707, 3715, 3867, 3988, 4187, 4315, 4443, 4468, 4659, 4803, 4948, 5027, 5091, 5251, 5267, 5608, 5723, 5812, 5971, 6388, 6499, 6523, 6568, 6979, 7067, 7099, 7147, 7915, 8035, 8187, 8611, 8899, 9115, 9172, 9235, 9427, 10123, 10315, 10363, 10411, 11227, 12147, 12667, 12787, 13027, 13435, 13483, 13603, 14203, 16867, 18187, 18547, 18643, 20227, 21547, 23083, 30067
15 68 A046012 239, 439, 751, 971, 1259, 1327, 1427, 1567, 1619, 2243, 2647, 2699, 2843, 3331, 3571, 3803, 4099, 4219, 5003, 5227, 5323, 5563, 5827, 5987, 6067, 6091, 6211, 6571, 7219, 7459, 7547, 8467, 8707, 8779, 9043, 9907, 10243, 10267, 10459, 10651, 10723, 11083, 11971, 12163, 12763, 13147, 13963, 14323, 14827, 14851, 15187, 15643, 15907, 16603, 16843, 17467, 17923, 18043, 18523, 19387, 19867, 20707, 22003, 26203, 27883, 29947, 32323, 34483
16 322 A046013 399, 407, 471, 559, 584, 644, 663, 740, 799, 884, 895, 903, 943, 1015, 1016, 1023, 1028, 1047, 1139, 1140, 1159, 1220, 1379, 1412, 1416, 1508, 1560, 1595, 1608, 1624, 1636, 1640, 1716, 1860, 1876, 1924, 1983, 2004, 2019, 2040, 2056, 2072, 2095, 2195, 2211, 2244, 2280, 2292, 2296, 2328, 2356, 2379, 2436, 2568, 2580, 2584, 2739, 2760, 2811, 2868, 2884, 2980, 3063, 3108, 3140, 3144, 3160, 3171, 3192, 3220, 3336, 3363, 3379, 3432, 3435, 3443, 3460, 3480, 3531, 3556, 3588, 3603, 3640, 3732, 3752, 3784, 3795, 3819, 3828, 3832, 3939, 3976, 4008, 4020, 4043, 4171, 4179, 4180, 4216, 4228, 4251, 4260, 4324, 4379, 4420, 4427, 4440, 4452, 4488, 4515, 4516, 4596, 4612, 4683, 4687, 4712, 4740, 4804, 4899, 4939, 4971, 4984, 5115, 5160, 5187, 5195, 5208, 5363, 5380, 5403, 5412, 5428, 5460, 5572, 5668, 5752, 5848, 5860, 5883, 5896, 5907, 5908, 5992, 5995, 6040, 6052, 6099, 6123, 6148, 6195, 6312, 6315, 6328, 6355, 6395, 6420, 6532, 6580, 6595, 6612, 6628, 6708, 6747, 6771, 6792, 6820, 6868, 6923, 6952, 7003, 7035, 7051, 7195, 7288, 7315, 7347, 7368, 7395, 7480, 7491, 7540, 7579, 7588, 7672, 7707, 7747, 7755, 7780, 7795, 7819, 7828, 7843, 7923, 7995, 8008, 8043, 8052, 8083, 8283, 8299, 8308, 8452, 8515, 8547, 8548, 8635, 8643, 8680, 8683, 8715, 8835, 8859, 8932, 8968, 9208, 9219, 9412, 9483, 9507, 9508, 9595, 9640, 9763, 9835, 9867, 9955, 10132, 10168, 10195, 10203, 10227, 10312, 10387, 10420, 10563, 10587, 10635, 10803, 10843, 10948, 10963, 11067, 11092, 11107, 11179, 11203, 11512, 11523, 11563, 11572, 11635, 11715, 11848, 11995, 12027, 12259, 12387, 12523, 12595, 12747, 12772, 12835, 12859, 12868, 13123, 13192, 13195, 13288, 13323, 13363, 13507, 13795, 13819, 13827, 14008, 14155, 14371, 14403, 14547, 14707, 14763, 14995, 15067, 15387, 15403, 15547, 15715, 16027, 16195, 16347, 16531, 16555, 16723, 17227, 17323, 17347, 17427, 17515, 18403, 18715, 18883, 18907, 19147, 19195, 19947, 19987, 20155, 20395, 21403, 21715, 21835, 22243, 22843, 23395, 23587, 24403, 25027, 25267, 27307, 27787, 28963, 31243
17 45 A046014 383, 991, 1091, 1571, 1663, 1783, 2531, 3323, 3947, 4339, 4447, 4547, 4651, 5483, 6203, 6379, 6451, 6827, 6907, 7883, 8539, 8731, 9883, 11251, 11443, 12907, 13627, 14083, 14779, 14947, 16699, 17827, 18307, 19963, 21067, 23563, 24907, 25243, 26083, 26107, 27763, 31627, 33427, 36523, 37123
18 150 A046015 335, 519, 527, 679, 1135, 1172, 1207, 1383, 1448, 1687, 1691, 1927, 2047, 2051, 2167, 2228, 2291, 2315, 2344, 2644, 2747, 2859, 3035, 3107, 3543, 3544, 3651, 3688, 4072, 4299, 4307, 4568, 4819, 4883, 5224, 5315, 5464, 5492, 5539, 5899, 6196, 6227, 6331, 6387, 6484, 6739, 6835, 7323, 7339, 7528, 7571, 7715, 7732, 7771, 7827, 8152, 8203, 8212, 8331, 8403, 8488, 8507, 8587, 8884, 9123, 9211, 9563, 9627, 9683, 9748, 9832, 10228, 10264, 10347, 10523, 11188, 11419, 11608, 11643, 11683, 11851, 11992, 12067, 12148, 12187, 12235, 12283, 12651, 12723, 12811, 12952, 13227, 13315, 13387, 13747, 13947, 13987, 14163, 14227, 14515, 14667, 14932, 15115, 15243, 16123, 16171, 16387, 16627, 17035, 17131, 17403, 17635, 18283, 18712, 19027, 19123, 19651, 20035, 20827, 21043, 21652, 21667, 21907, 22267, 22443, 22507, 22947, 23347, 23467, 23683, 23923, 24067, 24523, 24667, 24787, 25435, 26587, 26707, 28147, 29467, 32827, 33763, 34027, 34507, 36667, 39307, 40987, 41827, 43387, 48427
19 47 A046016 311, 359, 919, 1063, 1543, 1831, 2099, 2339, 2459, 3343, 3463, 3467, 3607, 4019, 4139, 4327, 5059, 5147, 5527, 5659, 6803, 8419, 8923, 8971, 9619, 10891, 11299, 15091, 15331, 16363, 16747, 17011, 17299, 17539, 17683, 19507, 21187, 21211, 21283, 23203, 24763, 26227, 27043, 29803, 31123, 37507, 38707
20 350 A046017 455, 615, 776, 824, 836, 920, 1064, 1124, 1160, 1263, 1284, 1460, 1495, 1524, 1544, 1592, 1604, 1652, 1695, 1739, 1748, 1796, 1880, 1887, 1896, 1928, 1940, 1956, 2136, 2247, 2360, 2404, 2407, 2483, 2487, 2532, 2552, 2596, 2603, 2712, 2724, 2743, 2948, 2983, 2987, 3007, 3016, 3076, 3099, 3103, 3124, 3131, 3155, 3219, 3288, 3320, 3367, 3395, 3496, 3512, 3515, 3567, 3655, 3668, 3684, 3748, 3755, 3908, 3979, 4011, 4015, 4024, 4036, 4148, 4264, 4355, 4371, 4395, 4403, 4408, 4539, 4548, 4660, 4728, 4731, 4756, 4763, 4855, 4891, 5019, 5028, 5044, 5080, 5092, 5268, 5331, 5332, 5352, 5368, 5512, 5560, 5592, 5731, 5944, 5955, 5956, 5988, 6051, 6088, 6136, 6139, 6168, 6280, 6339, 6467, 6504, 6648, 6712, 6755, 6808, 6856, 7012, 7032, 7044, 7060, 7096, 7131, 7144, 7163, 7171, 7192, 7240, 7428, 7432, 7467, 7572, 7611, 7624, 7635, 7651, 7667, 7720, 7851, 7876, 7924, 7939, 8067, 8251, 8292, 8296, 8355, 8404, 8472, 8491, 8632, 8692, 8755, 8808, 8920, 8995, 9051, 9124, 9147, 9160, 9195, 9331, 9339, 9363, 9443, 9571, 9592, 9688, 9691, 9732, 9755, 9795, 9892, 9976, 9979, 10027, 10083, 10155, 10171, 10291, 10299, 10308, 10507, 10515, 10552, 10564, 10819, 10888, 11272, 11320, 11355, 11379, 11395, 11427, 11428, 11539, 11659, 11755, 11860, 11883, 11947, 11955, 12019, 12139, 12280, 12315, 12328, 12331, 12355, 12363, 12467, 12468, 12472, 12499, 12532, 12587, 12603, 12712, 12883, 12931, 12955, 12963, 13155, 13243, 13528, 13555, 13588, 13651, 13803, 13960, 14307, 14331, 14467, 14491, 14659, 14755, 14788, 15235, 15268, 15355, 15603, 15688, 15691, 15763, 15883, 15892, 15955, 16147, 16228, 16395, 16408, 16435, 16483, 16507, 16612, 16648, 16683, 16707, 16915, 16923, 17067, 17187, 17368, 17563, 17643, 17763, 17907, 18067, 18163, 18195, 18232, 18355, 18363, 19083, 19443, 19492, 19555, 19923, 20083, 20203, 20587, 20683, 20755, 20883, 21091, 21235, 21268, 21307, 21387, 21508, 21595, 21723, 21763, 21883, 22387, 22467, 22555, 22603, 22723, 23443, 23947, 24283, 24355, 24747, 24963, 25123, 25363, 26635, 26755, 26827, 26923, 27003, 27955, 27987, 28483, 28555, 29107, 29203, 30283, 30787, 31003, 31483, 31747, 31987, 32923, 33163, 34435, 35683, 35995, 36283, 37627, 37843, 37867, 38347, 39187, 39403, 40243, 40363, 40555, 40723, 43747, 47083, 48283, 51643, 54763, 58507
21 85 A046018 431, 503, 743, 863, 1931, 2503, 2579, 2767, 2819, 3011, 3371, 4283, 4523, 4691, 5011, 5647, 5851, 5867, 6323, 6691, 7907, 8059, 8123, 8171, 8243, 8387, 8627, 8747, 9091, 9187, 9811, 9859, 10067, 10771, 11731, 12107, 12547, 13171, 13291, 13339, 13723, 14419, 14563, 15427, 16339, 16987, 17107, 17707, 17971, 18427, 18979, 19483, 19531, 19819, 20947, 21379, 22027, 22483, 22963, 23227, 23827, 25603, 26683, 27427, 28387, 28723, 28867, 31963, 32803, 34147, 34963, 35323, 36067, 36187, 39043, 40483, 44683, 46027, 49603, 51283, 52627, 55603, 58963, 59467, 61483
22 139 A171724 591, 623, 767, 871, 879, 1076, 1111, 1167, 1304, 1556, 1591, 1639, 1903, 2215, 2216, 2263, 2435, 2623, 2648, 2815, 2863, 2935, 3032, 3151, 3316, 3563, 3587, 3827, 4084, 4115, 4163, 4328, 4456, 4504, 4667, 4811, 5383, 5416, 5603, 5716, 5739, 5972, 6019, 6127, 6243, 6616, 6772, 6819, 7179, 7235, 7403, 7763, 7768, 7899, 8023, 8143, 8371, 8659, 8728, 8851, 8907, 8915, 9267, 9304, 9496, 10435, 10579, 10708, 10851, 11035, 11283, 11363, 11668, 12091, 12115, 12403, 12867, 13672, 14019, 14059, 14179, 14548, 14587, 14635, 15208, 15563, 15832, 16243, 16251, 16283, 16291, 16459, 17147, 17587, 17779, 17947, 18115, 18267, 18835, 18987, 19243, 19315, 19672, 20308, 20392, 22579, 22587, 22987, 24243, 24427, 25387, 25507, 25843, 25963, 26323, 26548, 27619, 28267, 29227, 29635, 29827, 30235, 30867, 31315, 33643, 33667, 34003, 34387, 35347, 41083, 43723, 44923, 46363, 47587, 47923, 49723, 53827, 77683, 85507
23 68 A046020 647, 1039, 1103, 1279, 1447, 1471, 1811, 1979, 2411, 2671, 3491, 3539, 3847, 3923, 4211, 4783, 5387, 5507, 5531, 6563, 6659, 6703, 7043, 9587, 9931, 10867, 10883, 12203, 12739, 13099, 13187, 15307, 15451, 16267, 17203, 17851, 18379, 20323, 20443, 20899, 21019, 21163, 22171, 22531, 24043, 25147, 25579, 25939, 26251, 26947, 27283, 28843, 30187, 31147, 31267, 32467, 34843, 35107, 37003, 40627, 40867, 41203, 42667, 43003, 45427, 45523, 47947, 90787
24 511 A048925 695, 759, 1191, 1316, 1351, 1407, 1615, 1704, 1736, 1743, 1988, 2168, 2184, 2219, 2372, 2408, 2479, 2660, 2696, 2820, 2824, 2852, 2856, 2915, 2964, 3059, 3064, 3127, 3128, 3444, 3540, 3560, 3604, 3620, 3720, 3864, 3876, 3891, 3899, 3912, 3940, 4063, 4292, 4308, 4503, 4564, 4580, 4595, 4632, 4692, 4715, 4744, 4808, 4872, 4920, 4936, 5016, 5124, 5172, 5219, 5235, 5236, 5252, 5284, 5320, 5348, 5379, 5432, 5448, 5555, 5588, 5620, 5691, 5699, 5747, 5748, 5768, 5828, 5928, 5963, 5979, 6004, 6008, 6024, 6072, 6083, 6132, 6180, 6216, 6251, 6295, 6340, 6411, 6531, 6555, 6699, 6888, 6904, 6916, 7048, 7108, 7188, 7320, 7332, 7348, 7419, 7512, 7531, 7563, 7620, 7764, 7779, 7928, 7960, 7972, 8088, 8115, 8148, 8211, 8260, 8328, 8344, 8392, 8499, 8603, 8628, 8740, 8760, 8763, 8772, 8979, 9028, 9048, 9083, 9112, 9220, 9259, 9268, 9347, 9352, 9379, 9384, 9395, 9451, 9480, 9492, 9652, 9672, 9715, 9723, 9823, 9915, 9928, 9940, 10011, 10059, 10068, 10120, 10180, 10187, 10212, 10248, 10283, 10355, 10360, 10372, 10392, 10452, 10488, 10516, 10612, 10632, 10699, 10740, 10756, 10788, 10792, 10840, 10852, 10923, 11019, 11032, 11139, 11176, 11208, 11211, 11235, 11267, 11307, 11603, 11620, 11627, 11656, 11667, 11748, 11752, 11811, 11812, 11908, 11928, 12072, 12083, 12243, 12292, 12376, 12408, 12435, 12507, 12552, 12628, 12760, 12808, 12820, 12891, 13035, 13060, 13080, 13252, 13348, 13395, 13427, 13444, 13512, 13531, 13539, 13540, 13587, 13611, 13668, 13699, 13732, 13780, 13912, 14035, 14043, 14212, 14235, 14260, 14392, 14523, 14532, 14536, 14539, 14555, 14595, 14611, 14632, 14835, 14907, 14952, 14968, 14980, 15019, 15112, 15267, 15339, 15411, 15460, 15483, 15528, 15555, 15595, 15640, 15652, 15747, 15748, 15828, 15843, 15931, 15940, 15988, 16107, 16132, 16315, 16360, 16468, 16563, 16795, 16827, 16872, 16888, 16907, 16948, 17032, 17043, 17059, 17092, 17283, 17560, 17572, 17620, 17668, 17752, 17812, 17843, 18040, 18052, 18088, 18132, 18148, 18340, 18507, 18568, 18579, 18595, 18627, 18628, 18667, 18763, 18795, 18811, 18867, 18868, 18915, 19203, 19528, 19579, 19587, 19627, 19768, 19803, 19912, 19915, 20260, 20307, 20355, 20427, 20491, 20659, 20692, 20728, 20803, 20932, 20955, 20980, 20995, 21112, 21172, 21352, 21443, 21448, 21603, 21747, 21963, 21988, 22072, 22107, 22180, 22323, 22339, 22803, 22852, 22867, 22939, 23032, 23035, 23107, 23115, 23188, 23235, 23307, 23368, 23752, 23907, 23995, 24115, 24123, 24292, 24315, 24388, 24595, 24627, 24628, 24643, 24915, 24952, 24955, 25048, 25195, 25347, 25467, 25683, 25707, 25732, 25755, 25795, 25915, 25923, 25972, 25987, 26035, 26187, 26395, 26427, 26467, 26643, 26728, 26995, 27115, 27163, 27267, 27435, 27448, 27523, 27643, 27652, 27907, 28243, 28315, 28347, 28372, 28459, 28747, 28891, 29128, 29283, 29323, 29395, 29563, 29659, 29668, 29755, 29923, 30088, 30163, 30363, 30387, 30523, 30667, 30739, 30907, 30955, 30979, 31252, 31348, 31579, 31683, 31795, 31915, 32008, 32043, 32155, 32547, 32635, 32883, 33067, 33187, 33883, 34203, 34363, 34827, 34923, 36003, 36043, 36547, 36723, 36763, 36883, 37227, 37555, 37563, 38227, 38443, 38467, 39603, 39643, 39787, 40147, 40195, 40747, 41035, 41563, 42067, 42163, 42267, 42387, 42427, 42835, 43483, 44947, 45115, 45787, 46195, 46243, 46267, 47203, 47443, 47707, 48547, 49107, 49267, 49387, 49987, 50395, 52123, 52915, 54307, 55867, 56947, 57523, 60523, 60883, 61147, 62155, 62203, 63043, 64267, 79363, 84043, 84547, 111763
25 95 A056987 479, 599, 1367, 2887, 3851, 4787, 5023, 5503, 5843, 7187, 7283, 7307, 7411, 8011, 8179, 9227, 9923, 10099, 11059, 11131, 11243, 11867, 12211, 12379, 12451, 12979, 14011, 14923, 15619, 17483, 18211, 19267, 19699, 19891, 20347, 21107, 21323, 21499, 21523, 21739, 21787, 21859, 24091, 24571, 25747, 26371, 27067, 27091, 28123, 28603, 28627, 28771, 29443, 30307, 30403, 30427, 30643, 32203, 32443, 32563, 32587, 33091, 34123, 34171, 34651, 34939, 36307, 37363, 37747, 37963, 38803, 39163, 44563, 45763, 48787, 49123, 50227, 51907, 54667, 55147, 57283, 57667, 57787, 59707, 61027, 62563, 63067, 64747, 66763, 68443, 69763, 80347, 85243, 89083, 93307

The number of negative discriminants having class number 1, 2, 3, ... are 9, 18, 16, 54, 25, 51, 31, ... (OEIS A046125). The largest negative discriminants having class numbers 1, 2, 3, ... are 163, 427, 907, 1555, 2683, ... (OEIS A038552).

The discriminants d corresponding to real quadratic fields are 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40, 41, 44, 53, ... (OEIS A003658), corresponding to class numbers h(d)=1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, ... (OEIS A003652).

The table below gives lists of the first few positive fundamental discriminants d having small class numbers h(d), corresponding to real quadratic fields, augmenting the table of Cohn (1980, pp. 271-274) by including terms divisible by 4 (Cohen 1993, pp. 516-519; Cohen 2000, pp. 534-537). In fact, the discriminant of all quadratic number fields is squarefree except for a possible factor of 4.

h(d) OEIS d
1 A003656 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 41, 44, 53, 56, 57, 61, ...
2 A094619 40, 60, 65, 85, 104, 105, 120, 136, 140, 156, 165, 168, 185, 204, ...
3 A094612 229, 257, 316, 321, 469, 473, 568, 733, 761, 892, 993, 1016, 1101, ...
4 A094613 145, 328, 445, 505, 520, 680, 689, 777, 780, 793, 840, 876, 897, 901, ...
5 A094614 401, 817, 1093, 1393, 1429, 1641, 1756, 1897, 1996, 2081, 2153, 2908, ...

The smallest d such that the real quadratic field with discriminant d has class h(d)=n for n=1, 2, ... are 5, 40, 229, 145, 401, 697, 577, 904, 1129, ... (OEIS A081364).


REFERENCES:

Arno, S. "The Imaginary Quadratic Fields of Class Number 4." Acta Arith. 40, 321-334, 1992.

Arno, S.; Robinson, M. L.; and Wheeler, F. S. "Imaginary Quadratic Fields with Small Odd Class Number." http://www.math.uiuc.edu/Algebraic-Number-Theory/0009/.

Buell, D. A. "Small Class Numbers and Extreme Values of L-Functions of Quadratic Fields." Math. Comput. 139, 786-796, 1977.

Cohen, H. "Table of Class Numbers of Complex Quadratic Fields" and "Table of Class Numbers and Units of Real Quadratic Fields." §B.1 and B.2 in A Course in Computational Algebraic Number Theory. New York: Springer-Verlag, pp. 513-519, 1993.

Cohen, H. "Hilbert Class Fields of Quadratic Fields." §12.1 in Advanced Topics in Computational Number Theory. New York: Springer-Verlag, pp. 533-542, 2000.

Cohn, H. Advanced Number Theory. New York: Dover, pp. 163 and 234, 1980.

Cox, D. A. Primes of the Form x2+ny2: Fermat, Class Field Theory and Complex Multiplication. New York: Wiley, 1997.

Davenport, H. "Dirichlet's Class Number Formula." Ch. 6 in Multiplicative Number Theory, 2nd ed. New York: Springer-Verlag, pp. 43-53, 1980.

Finch, S. R. "Class Number Theory." http://algo.inria.fr/csolve/clss.pdf.

Himmetoglu, S. Berechnung von Klassenzahlen Imaginaer-Quadratischer Zahlkörper. Diplomarbeit. Heidelberg, Germany: University of Heidelberg Faculty for Mathematics, March 1986.

Iyanaga, S. and Kawada, Y. (Eds.). "Class Numbers of Algebraic Number Fields." Appendix B, Table 4 in Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, pp. 1494-1496, 1980.

Montgomery, H. and Weinberger, P. "Notes on Small Class Numbers." Acta. Arith. 24, 529-542, 1974.

Müller, H. "A Calculation of Class-Numbers of Imaginary Quadratic Numberfields." Tamkang J. Math. 9, 121-128, 1978.

Oesterlé, J. "Nombres de classes des corps quadratiques imaginaires." Astérique 121-122, 309-323, 1985.

Sloane, N. J. A. Sequences A003652/M0051, A003656/M3777, A003657/M2332, A003658/M3776, A006203/M5131, A006641/M0112, A013658, A014602, A014603, A035120, A038552, A046002, A046003, A046125, A048925, A056987, A081364, A094612, A094613, A094614, and A094619 in "The On-Line Encyclopedia of Integer Sequences."

Stark, H. M. "A Complete Determination of the Complex Quadratic Fields of Class Number One." Michigan Math. J. 14, 1-27, 1967.

Stark, H. M. "On Complex Quadratic Fields with Class Number Two." Math. Comput. 29, 289-302, 1975.

Wagner, C. "Class Number 5, 6, and 7." Math. Comput. 65, 785-800, 1996.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.