المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
تنفيذ وتقييم خطة إعادة الهيكلة (إعداد خطة إعادة الهيكلة1)
2024-11-05
مـعاييـر تحـسيـن الإنـتاجـيـة
2024-11-05
نـسـب الإنـتاجـيـة والغـرض مـنها
2024-11-05
المـقيـاس الكـلـي للإنتاجـيـة
2024-11-05
الإدارة بـمؤشـرات الإنـتاجـيـة (مـبادئ الإنـتـاجـيـة)
2024-11-05
زكاة الفطرة
2024-11-05

فوائد البصل الطبية (استخدام البصل لعلاج البول السكري)
30-3-2016
مخالفة بعض الاهواء والرغائب
2024-07-20
bracketing (n.)
2023-06-19
الحزم الثانوية Sub-bands
22-4-2020
تأثير "أتنجزهاوزن" Ettingshausen effect
23-2-2019
سلمة بن ثبيط بن شريط بن انس
12-11-2017

Kolakoski Sequence  
  
625   05:48 مساءً   date: 29-12-2019
Author : Allouche, J.-P. and Shallit, J.
Book or Source : Automatic Sequences: Theory, Applications, Generalizations. Cambridge, England: Cambridge University Press
Page and Part : ...


Read More
Date: 24-1-2021 787
Date: 3-10-2020 463
Date: 7-11-2020 1458

Kolakoski Sequence

 

The self-describing sequence consisting of "blocks" of single and double 1s and 2s, where a "block" is a single digit or pair of digits that is different from the digit (or pair of digits) in the preceding block. To construct the sequence, start with the single digit 1 (the first "block"). Here, the single 1 means that block of length one follows the first block. Therefore, require that the next block is 2, giving the sequence 12.

Now, the 2 means that the next (third) block will have length two, so append 11 and obtain the sequence 1211. We have added two 1s, so the fourth and fifth blocks have length one each, giving 12112 and then 121121. As a result of adding 21, we obtain 121121221. As a result of adding 221, we obtain 12112122122112, and so on, giving the sequence 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, ... (OEIS A006928). The sequence after successive iterations is given by 1, 12, 1211, 121121, 121121221, ..., and the lengths of this sequence after steps n=1, 2, ... are given by 1, 2, 4, 6, 9, 14, 22, ... (OEIS A042942).

If the sequence is started with 1, 2, 2 and the above procedure is undertaken beginning with the last 2, then the virtually identical sequence 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, ... (OEIS A000002) is obtained. (It is the same as OEIS A006928, except that the second 2 is doubled.) When presented in this form, the term a(n) gives the length of the nth run in the sequence. The lengths after steps n=1, 2, ... are then 1, 2, 3, 5, 7, 10, 15, ... (OEIS A001083), essentially one less than OEIS A042942.

Kolakoski sequence recurrence plot

A recurrence plot of the Kolakoski sequence is illustrated above.

The constant obtained by taking 2->11->0, and interpreting the result as a binary fraction

 0.110010110..._2=0.794507192...

(OEIS A118270) is sometimes known as the Kolakoski constant (Plouffe).

KolakoskiSequence

The question of whether the number of 1s is "asymptotically" equal to the number of 2s is unsettled, although the above plot (which shows the fraction of 1s as a function of number of digits) is certainly consistent with 1 and 2 being equidistributed.


REFERENCES:
Allouche, J.-P. and Shallit, J. Automatic Sequences: Theory, Applications, Generalizations. Cambridge, England: Cambridge University Press, pp. 336-337, 2003.

Dekking, F. M. "On the Structure of Self-Generating Sequences." In Séminaire de Théorie des Nombres, 1980-1981. Held at the Université de Bordeaux I, Talence, during the academic year 1980-1981. Université de Bordeaux I, U.E.R. de Mathématiques et d'Informatique, Laboratoire de Théorie des Nombres, Talence, pp. 1-6, 1981.

Dekking, F. M. "What Is the Long Range Order in the Kolakoski Sequence?" In Proceedings of the NATO Advanced Study Institute held in Waterloo, ON, August 21-September 1, 1995 (Ed. R. V. Moody). Dordrecht, Netherlands: Kluwer, pp. 115-125, 1997.

Keane, M. S. "Ergodic Theory and Subshifts of Finite Type." In Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces (Ed. T. Bedford and M. Keane). Oxford, England: Oxford University Press, pp. 35-70, 1991.

Kimberling, C. "Integer Sequences and Arrays." http://faculty.evansville.edu/ck6/integer/.

Kimberling, C. "Unsolved Problems and Rewards." http://faculty.evansville.edu/ck6/integer/unsolved.html.

Kolakoski, W. "Problem 5304: Self Generating Runs." Amer. Math. Monthly 72, 674, 1965.

Kolakoski, W. "Problem 5304." Amer. Math. Monthly 73, 681-682, 1966.

Lagarias, J. C. "Number Theory and Dynamical Systems." In The Unreasonable Effectiveness of Number Theory (Ed. S. A. Burr). Providence, RI: Amer. Math. Soc., pp. 35-72, 1992.

Paun, G. and Salomaa, A. "Self-Reading Sequences." Amer. Math. Monthly 103, 166-168, 1996.

Plouffe, S. "Kolakoski Constant to 25000 Digits." http://pi.lacim.uqam.ca/piDATA/Kolakoski.txt.

Sellke. Problem 324 in Statistica Neerlandica 50, 222-223, 1996.

Sloane, N. J. A. Sequences A000002/M0190, A001083, A006298/M0070, A042942, and A118270 in "The On-Line Encyclopedia of Integer Sequences."

Vardi, I. Computational Recreations in Mathematica. Redwood City, CA: Addison-Wesley, p. 233, 1991.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.