Read More
Date: 21-8-2019
![]()
Date: 25-8-2019
![]()
Date: 12-10-2018
![]() |
Krall and Fink (1949) defined the Bessel polynomials as the function
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
where is a modified Bessel function of the second kind. They are very similar to the modified spherical bessel function of the second kind
. The first few are
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
(OEIS A001497). These functions satisfy the differential equation
![]() |
(8) |
Carlitz (1957) subsequently considered the related polynomials
![]() |
(9) |
This polynomial forms an associated Sheffer sequence with
![]() |
(10) |
This gives the generating function
![]() |
(11) |
The explicit formula is
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
where is a double factorial and
is a confluent hypergeometric function of the first kind. The first few polynomials are
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
(OEIS A104548).
The polynomials satisfy the recurrence formula
![]() |
(18) |
REFERENCES:
Carlitz, L. "A Note on the Bessel Polynomials." Duke Math. J. 24, 151-162, 1957.
Grosswald, E. Bessel Polynomials. New York: Springer-Verlag, 1978.
Krall, H. L. and Fink, O. "A New Class of Orthogonal Polynomials: The Bessel Polynomials." Trans. Amer. Math. Soc. 65, 100-115, 1949.
Roman, S. "The Bessel Polynomials." §4.1.7 in The Umbral Calculus. New York: Academic Press, pp. 78-82, 1984.
Sloane, N. J. A. Sequences A001497, A001498, and A104548 in "The On-Line Encyclopedia of Integer Sequences."
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|