Read More
Date: 25-6-2019
2318
Date: 24-3-2019
3045
Date: 29-8-2019
2013
|
Krall and Fink (1949) defined the Bessel polynomials as the function
(1) |
|||
(2) |
where is a modified Bessel function of the second kind. They are very similar to the modified spherical bessel function of the second kind . The first few are
(3) |
|||
(4) |
|||
(5) |
|||
(6) |
|||
(7) |
(OEIS A001497). These functions satisfy the differential equation
(8) |
Carlitz (1957) subsequently considered the related polynomials
(9) |
This polynomial forms an associated Sheffer sequence with
(10) |
This gives the generating function
(11) |
The explicit formula is
(12) |
|||
(13) |
where is a double factorial and is a confluent hypergeometric function of the first kind. The first few polynomials are
(14) |
|||
(15) |
|||
(16) |
|||
(17) |
(OEIS A104548).
The polynomials satisfy the recurrence formula
(18) |
REFERENCES:
Carlitz, L. "A Note on the Bessel Polynomials." Duke Math. J. 24, 151-162, 1957.
Grosswald, E. Bessel Polynomials. New York: Springer-Verlag, 1978.
Krall, H. L. and Fink, O. "A New Class of Orthogonal Polynomials: The Bessel Polynomials." Trans. Amer. Math. Soc. 65, 100-115, 1949.
Roman, S. "The Bessel Polynomials." §4.1.7 in The Umbral Calculus. New York: Academic Press, pp. 78-82, 1984.
Sloane, N. J. A. Sequences A001497, A001498, and A104548 in "The On-Line Encyclopedia of Integer Sequences."
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مدرسة دار العلم.. صرح علميّ متميز في كربلاء لنشر علوم أهل البيت (عليهم السلام)
|
|
|