The Riemann-Siegel integral formula is the following representation of the xi-function found in Riemann's Nachlass by Bessel-Hagen in 1926 (Siegel 1932; Edwards 2001, p. 166). The formula is essentially
(1) |
where
(2) |
the symbol means that the path of integration is a line of slope crossing the real axis between 0 and 1 and directed from upper left to lower right and in which is defined on the slit plane (excluding 0 and negative real numbers) by taking to be real on the positive real axis and setting (Edwards 2001, p. 167). Here, is analytic ar , , ..., and has a simple pole at 0.
This formula gives a proof of the functional equation
(3) |
REFERENCES:
Edwards, H. M. "Riemann-Siegel Integral Formula" and "Alternative Proof of the Integral Formula." §7.9 and 12.6 in Riemann's Zeta Function. New York: Dover, pp. 165-170 and 273-278, 2001.
Kuzmin, R. "On the Roots of Dirichlet Series." Izv. Akad. Nauk SSSR Ser. Math. Nat. Sci. 7, 1471-1491, 1934.
Siegel, C. L. "Über Riemanns Nachlaß zur analytischen Zahlentheorie." Quellen Studien zur Geschichte der Math. Astron. und Phys. Abt. B: Studien 2, 45-80, 1932. Reprinted in Gesammelte Abhandlungen, Vol. 1. Berlin: Springer-Verlag, 1966.ش
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|