المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الضوء
2025-04-10
البلازما والفضاء
2025-04-10
الكون المتحرك
2025-04-10
الفيزياء والكون .. البلازما
2025-04-10
الفيزياء والكون.. الذرة
2025-04-10
D-dimer (Fragment D-dimer, Fibrin degradation product [FDP], Fibrin split products)
2025-04-10

التنافي بين النزاهة عن الريب والتحريف
2023-11-10
مؤلفاته ابن مالك وخصائصه
29-03-2015
مصدر للنور
2023-04-12
آلة إنشاء خطوط الزراعة (الخطاط) (Ridges)
9-8-2022
التناسل في الجاموس
26-4-2016
أحكام متفرقة من فقه الامام الرضا
3-8-2016

Watson-Whipple Transformation  
  
1308   04:30 مساءً   date: 2-9-2019
Author : Gasper, G. and Rahman, M.
Book or Source : Basic Hypergeometric Series. Cambridge, England: Cambridge University Press
Page and Part : ...


Read More
Date: 13-6-2019 2943
Date: 30-3-2019 1646
Date: 30-3-2019 1457

Watson-Whipple Transformation

If at least one of de, or f has the form q^(-N) for some nonnegative integer N (in which case both sums terminate after N+1 terms), then

 _8phi_7[a,qa^(1/2),-qa^(1/2),b,c,d,e,f; a^(1/2),-a^(1/2),(aq)/b,(aq)/c,(aq)/d,(aq)/e,(aq)/f;q,(a^2q^2)/(bcdef)] 
 =((aq,(aq)/(de),(aq)/(df),(aq)/(ef))_infty)/(((aq)/d,(aq)/e,(aq)/f,(aq)/(def))_infty)_4phi_3[(aq)/(bc),d,e,f; (aq)/b,(aq)/c,(def)/a;q,q],

where (a_1,a_2,...,a_r;q)_infty is a generalized q-Pochhammer symbol

 (a_1,a_2,...,a_r;q)_infty=(a_1;q)_infty(a_2;q)_infty...(a_r;q)_infty,

and each of _8phi_7 and _4phi_3 is a q-hypergeometric function.


REFERENCES:

Gasper, G. and Rahman, M. Basic Hypergeometric Series. Cambridge, England: Cambridge University Press, p. 242, 1990.

Gordon, B. and McIntosh, R. J. "Some Eighth Order Mock Theta Functions." J. London Math. Soc. 62, 321-335, 2000.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.