Read More
Date: 23-8-2019
![]()
Date: 14-10-2019
![]()
Date: 25-4-2019
![]() |
The Andrews-Schur identity states
![]() |
(1) |
where is a q-binomial coefficient and
is a q-bracket. It is a polynomial identity for
, 1 which implies the Rogers-Ramanujan identities by taking
and applying the Jacobi triple product identity.
The limit as of the identity in (1) is
![]() |
(2) |
A variant of the identity is
![]() |
(3) |
where the symbol in the sum limits is the floor function (Paule 1994). A related identity is given by
![]() |
(4) |
for , 1 (Paule 1994). For
, equation (3) becomes
![]() |
(5) |
REFERENCES:
Andrews, G. E. "A Polynomial Identity which Implies the Rogers-Ramanujan Identities." Scripta Math. 28, 297-305, 1970.
Paule, P. "Short and Easy Computer Proofs of the Rogers-Ramanujan Identities and of Identities of Similar Type." Electronic J. Combinatorics 1, No. 1, R10, 1-9, 1994. http://www.combinatorics.org/Volume_1/Abstracts/v1i1r10.html.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
العتبة العباسية المقدسة توجه دعوة لجامعة القادسية للمشاركة في حفل التخرج المركزي
|
|
|