Read More
Date: 1-9-2019
974
Date: 8-9-2019
1424
Date: 8-8-2019
1352
|
The Andrews-Schur identity states
(1) |
where is a q-binomial coefficient and is a q-bracket. It is a polynomial identity for , 1 which implies the Rogers-Ramanujan identities by taking and applying the Jacobi triple product identity.
The limit as of the identity in (1) is
(2) |
A variant of the identity is
(3) |
where the symbol in the sum limits is the floor function (Paule 1994). A related identity is given by
(4) |
for , 1 (Paule 1994). For , equation (3) becomes
(5) |
REFERENCES:
Andrews, G. E. "A Polynomial Identity which Implies the Rogers-Ramanujan Identities." Scripta Math. 28, 297-305, 1970.
Paule, P. "Short and Easy Computer Proofs of the Rogers-Ramanujan Identities and of Identities of Similar Type." Electronic J. Combinatorics 1, No. 1, R10, 1-9, 1994. http://www.combinatorics.org/Volume_1/Abstracts/v1i1r10.html.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
المجمع العلمي ينظّم ندوة حوارية حول مفهوم العولمة الرقمية في بابل
|
|
|