Read More
Date: 27-11-2018
494
Date: 25-11-2018
331
Date: 1-11-2018
307
|
The haversine, also called the haversed sine, is a little-used entire trigonometric function defined by
(1) |
|||
(2) |
|||
(3) |
where is the versine, is the cosine, and is the sine.
The haversine is implemented in the Wolfram Language as Haversine[z].
The haversine can be extended to the complex plane as illustrated above.
Its derivative is given by
(4) |
and its indefinite integral by
(5) |
It has Maclaurin series
(6) |
|||
(7) |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 78, 1972.
Smart, W. M. Text-Book on Spherical Astronomy, 6th ed. Cambridge, England: Cambridge University Press, p. 18, 1960.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
خدمات متعددة يقدمها قسم الشؤون الخدمية للزائرين
|
|
|