المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
تربية أنواع ماشية اللحم
2024-11-05
زكاة الذهب والفضة
2024-11-05
ماشية اللحم في الولايات المتحدة الأمريكية
2024-11-05
أوجه الاستعانة بالخبير
2024-11-05
زكاة البقر
2024-11-05
الحالات التي لا يقبل فيها الإثبات بشهادة الشهود
2024-11-05

الخطـة التسويقيـة
7-3-2019
Ralph Hartzler Fox
13-12-2017
الحج إلى بيت أوزير.
2024-03-01
معنى كلمة حطب
10-12-2015
الفكر الإقليمي في القرنين ١٧ و ١٨
30-10-2021
معنى {وَإِنَّا أَوْ إِيَّاكُمْ لَعَلَى هُدًى أَوْ فِي ضَلَالٍ مُبِينٍ}.
30-3-2022

Isoperimetric Problem  
  
1689   01:53 مساءً   date: 12-10-2018
Author : Borwein, J. and Bailey, D
Book or Source : Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters
Page and Part : ...


Read More
Date: 24-9-2019 986
Date: 22-8-2019 1567
Date: 23-6-2019 1164

Isoperimetric Problem

Find a closed plane curve of a given perimeter which encloses the greatest area. The solution is a circle. If the class of curves to be considered is limited to smooth curves, the isoperimetric problem can be stated symbolically as follows: find an arc with parametric equations x=x(t)y=y(t) for t in [t_1,t_2] such that x(t_1)=x(t_2)y(t_1)=y(t_2) (where no further intersections occur) constrained by

such that

is a maximum.

Zenodorus proved that the area of the circle is larger than that of any polygon having the same perimeter, but the problem was not rigorously solved until Steiner published several proofs in 1841 (Wells 1991).


REFERENCES:

Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, p. 80, 2003.

Bogomolny, A. "Isoperimetric Theorem and Inequality." http://www.cut-the-knot.org/do_you_know/isoperimetric.shtml.

Isenberg, C. "The Maximum Area Contained by a Given Circumference." Appendix V in The Science of Soap Films and Soap Bubbles. New York: Dover, pp. 171-173, 1992.

Littlewood, J. E. Littlewood's Miscellany. Cambridge, England: Cambridge University Press, p. 32, 1986.

Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, pp. 149-150, 1999.

Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, pp. 122-124, 1991.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.