Read More
Date: 22-6-2019
![]()
Date: 21-8-2018
![]()
Date: 23-4-2019
![]() |
An identity in calculus of variations discovered in 1868 by Beltrami. The Euler-Lagrange differential equation is
![]() |
(1) |
Now, examine the derivative of with respect to
![]() |
(2) |
Solving for the term gives
![]() |
(3) |
Now, multiplying (1) by gives
![]() |
(4) |
Substituting (3) into (4) then gives
![]() |
(5) |
![]() |
(6) |
This form is especially useful if , since in that case
![]() |
(7) |
which immediately gives
![]() |
(8) |
where is a constant of integration (Weinstock 1974, pp. 24-25; Arfken 1985, pp. 928-929; Fox 1988, pp. 8-9).
The Beltrami identity greatly simplifies the solution for the minimal area surface of revolution about a given axis between two specified points. It also allows straightforward solution of the brachistochrone problem.
REFERENCES:
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, 1985.
Fox, C. An Introduction to the Calculus of Variations. New York: Dover, 1988.
Weinstock, R. Calculus of Variations, with Applications to Physics and Engineering. New York: Dover, 1974.
|
|
للعاملين في الليل.. حيلة صحية تجنبكم خطر هذا النوع من العمل
|
|
|
|
|
"ناسا" تحتفي برائد الفضاء السوفياتي يوري غاغارين
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|