Read More
Date: 21-9-2018
1824
Date: 14-9-2019
1097
Date: 17-9-2018
1290
|
The Dirichlet beta function is defined by the sum
(1) |
|||
(2) |
where is the Lerch transcendent. The beta function can be written in terms of the Hurwitz zeta function by
(3) |
The beta function can be defined over the whole complex plane using analytic continuation,
(4) |
where is the gamma function.
The Dirichlet beta function is implemented in the Wolfram Language as DirichletBeta[x].
The beta function can be evaluated directly special forms of arguments as
(5) |
|||
(6) |
|||
(7) |
where is an Euler number.
Particular values for are
(8) |
|||
(9) |
|||
(10) |
|||
(11) |
where is Catalan's constant and is the polygamma function. For , 3, 5, ..., , where the multiples are 1/4, 1/32, 5/1536, 61/184320, ... (OEIS A046976 and A053005).
It is involved in the integral
(12) |
(Guillera and Sondow 2005).
Rivoal and Zudilin (2003) proved that at least one of the seven numbers , , , , , , and is irrational.
The derivative can also be computed analytically at a number of integer values of including
(13) |
|||
(14) |
|||
(15) |
|||
(16) |
|||
(17) |
|||
(18) |
|||
(19) |
(OEIS A133922, A113847, and A078127), where is Catalan's constant, is the gamma function, and is the Euler-Mascheroni constant.
A nice sum involving is given by
(20) |
for a positive integer.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 807-808, 1972.
Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, p. 384, 1987.
Comtet, L. Problem 37 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, p. 89, 1974.
Guillera, J. and Sondow, J. "Double Integrals and Infinite Products for Some Classical Constants Via Analytic Continuations of Lerch's Transcendent." 16 June 2005 http://arxiv.org/abs/math.NT/0506319.
Rivoal, T. and Zudilin, W. "Diophantine Properties of Numbers Related to Catalan's Constant." Math. Ann. 326, 705-721, 2003. http://www.mi.uni-koeln.de/~wzudilin/beta.pdf.
Sloane, N. J. A. Sequences A046976, A053005, A078127, A113847, and A133922 in "The On-Line Encyclopedia of Integer Sequences."
Spanier, J. and Oldham, K. B. "The Zeta Numbers and Related Functions." Ch. 3 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 25-33, 1987.
Mathews, J. and Walker, R. L. Mathematical Methods of Physics, 2nd ed. Reading, MA: W. A. Benjamin/Addison-Wesley, p. 57, 1970.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|