Read More
Date: 13-6-2018
![]()
Date: 22-6-2018
![]()
Date: 21-5-2018
![]() |
Let be a real or complex piecewise-continuous function defined for all values of the real variable
and that is periodic with minimum period
so that
![]() |
(1) |
Then the differential equation
![]() |
(2) |
has two continuously differentiable solutions and
, and the characteristic equation is
![]() |
(3) |
with eigenvalues and
. Then Floquet's theorem states that if the roots
and
are different from each other, then (2) has two linearly independent solutions
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
where and
are periodic with period
(Magnus and Winkler 1979, p. 4).
REFERENCES:
Magnus, W. and Winkler, S. "Floquet's Theorem." §1.2 in Hill's Equation. New York: Dover, pp. 3-8, 1979.
|
|
للعاملين في الليل.. حيلة صحية تجنبكم خطر هذا النوع من العمل
|
|
|
|
|
"ناسا" تحتفي برائد الفضاء السوفياتي يوري غاغارين
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|