1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية المجموعات :

​More About Sets

المؤلف:  W.D. Wallis

المصدر:  Mathematics in the Real World

الجزء والصفحة:  7-9

2-2-2016

2260

We defined the notation s ∈ S to mean “s belongs to S” or “s is an element of S.” If S and T are two sets, we shall write T ⊆ S to mean that every member of T is also a member of S. In other words, “If s is any element of T then s is a member of S,” or

                                        s ∈ T ⇒ s ∈ S,

where ⇒ is shorthand for implies. When T ⊆ S we say T is subset of S. Sets S and T are equal, S = T, if and only if S ⊆ T and T ⊆ S are both true. If necessary, we can represent the situation where T is a subset of S but S is not equal to T—there is at least one member of S that is not a member of T—by writing S ⊂ T, and we call T a proper subset of S.

Suppose R ⊆ S and S ⊆ T are both true. Any member of R will also be a member of S, which means it is a member of T. So R ⊆ T. This sort of rule is called a transitive law.

It is important not to confuse the two symbols ∈ and ⊆, or their meanings:

Sample Problem 1.1 Suppose S = {0,1}. Which of the following are true:

(i) 0 ∈ S, {0} ∈ S, 0 ⊂ S,

(ii) {0} ⊂ S, 0 ⊆ S, {0} ⊆ S, S ∈ S,

(iii) S ⊂ S, S ⊆ S?

Solution.

(i) 0 is a member of S, but {0} and S are not, so 0 ∈ S is true but {0} ∈ S, and S ∈ S are false.

(ii) As 0 is a member of S, {0} ⊂ S and {0} ⊆ S are true. But 0 is not a set ofelements of S, so 0 ⊂ S and 0 ⊆ S are false.

(iii) S ⊆ S is true, but S ⊂ S would imply S ≠S, so it is false.

Among the standard number sets, many subset relationships exist. Every natural number is an integer, every integer is a rational number, and every rational number is a real number, so N ⊆ Z, Z ⊆ Q, Q ⊆ R. We could write all these relationships down in one expression:

                                                           N ⊆ Z ⊆ Q ⊆ R.

In fact, we know that no two of these sets are equal, so we could write

                                                                N ⊂ Z ⊂ Q ⊂ R.

Given sets S and T, we define two operations: the union of S and T is the set

                                                   S∪T = {x : x ∈ S or x ∈ T (or both)};  

the intersection of S and T is the set

                                              S∩T = {x : x ∈ S and x ∈ T}.

As a kind of opposite to the union, the notation ST denotes the set of all members of S that are not in T.

There is also a special relationship between subsets and the other operations. If S is any subset of T, then S∩T = S and S∪T = T.

Suppose two sets, S and T, have no common element. Then S and T are called disjoint. In that case, S∩T is a set with no elements! There is no problem with the concept of such a set. We shall define the empty set, also called the null set, to be a set that has no elements. This set is denoted 0/. The set 0/ is unique and is a subset of every other set. Then “S and T are disjoint” means S∩T = 0/.

Given sets S and T, the notation ST is used for the set formed by deleting from S all the members that are also in T. Clearly ST is the same as S(S∩T). If S and T are disjoint, then ST = S, while SS = S.

Finally, we can combine two sets S and T to form a new set called the Cartesian product S×T. This consists of all the ordered pairs with the first element a member of S and the second a member of T. For example, If S = {1,3} and T = {2,3,4} then

                                      S×T = {(1,2),(1,3),(1,4),(3,2),(3,3),(3,4)}.

In the following example, remember that a perfect square means a number of the form n2, where n is an integer.

Sample Problem 1.2 In each case, are the sets S and T disjoint? If not, what is their intersection?

(i) S is the set of perfect squares, T = RR+.

(ii) S is the set of all multiples of 5, T is the set of all multiples of 7. Solution.

(i) They are not disjoint, because 0 is a perfect square (0 = 02);  S∩T = {0}.

(ii) They are not disjoint. S∩T is the set of all multiples of 35.

 

 

 

 

 

EN

تصفح الموقع بالشكل العمودي