تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Sets
المؤلف:
W.D. Wallis
المصدر:
Mathematics in the Real World
الجزء والصفحة:
1-2
2-2-2016
1727
Most students will already know some of the material in this chapter, but even they should review some basics (sets, the standard number systems, and so on) so that we all use the same notation. We shall also introduce Venn diagrams, which will be a useful tool in more than one place.
Sets
All of mathematics rests on the foundations of set theory and numbers. We’ll start this chapter by reminding you of some basic definitions and notations and some further properties of numbers and sets.
A set is any collection of objects. Sets abound in our lives—most children have owned a train set (a collection of engines, cars, track pieces, and so on); you have sets of CDs, sets of colored pencils, and so on. You could talk about all your friends as a set, or all your clothes.
The objects in the collection are called the members or elements of the set. If x is a member of a set S, we write x ∈ S, and x ∉ S means that x is not a member of S.
One way of defining a set is to list all the elements, usually between braces; thus if S is the set consisting of the numbers 0, 1 and 3, we could write S = {0,1,3}.
Another method is to use the membership law of the set: for example, since the numbers 0, 1 and 3 are precisely the numbers that satisfy the equation x3 − 4x2 + 3x = 0, we could write the set S as S = {x : x3 −4x2 +3x = 0}
(which we read as “the set of all x such that x3 − 4x2 + 3x = 0”). Often we use a vertical line instead of the colon in this expression, as in
S = {x | x3 −4x2 +3x = 0}.
This form is sometimes called set-builder notation.
Sample Problem 1.1 Write three different expressions for the set with elements 1 and −1.
Solution. Three possibilities are {1,−1},{x : x2 = 1}, and “the set of square roots of 1”. There are others.
Your Turn. Write three different expressions for the set with the three elements 1, 2 and 3.
The definition of a set does not allow for ordering of its elements, or for repetition of its elements. For example, {1,2,3},{1,3,2} and {1,2,3,1} all represent the same set. To handle problems that involve ordering, we define a sequence to be an ordered set. Sequences are denoted by using parentheses (round brackets) instead of the braces that we use for sets; (1,3,2) is the sequence with first element 1, second element 3 and third element 2, and is different from (1,2,3). Sequences can containrepetitions, and (1,2,1,3) is quite different from (1,2,3).