المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
{ان أولى الناس بإبراهيم للذين اتبعوه}
2024-10-31
{ما كان إبراهيم يهوديا ولا نصرانيا}
2024-10-31
أكان إبراهيم يهوديا او نصرانيا
2024-10-31
{ قل يا اهل الكتاب تعالوا الى كلمة سواء بيننا وبينكم الا نعبد الا الله}
2024-10-31
المباهلة
2024-10-31
التضاريس في الوطن العربي
2024-10-31


Ernst Sigismund Fischer  
  
79   02:02 مساءً   date: 1-5-2017
Author : M Pinl
Book or Source : Ernst Sigismund Fischer, Neue Deutsche Biographie 5
Page and Part : ...


Read More
Date: 26-4-2017 13
Date: 3-5-2017 22
Date: 16-5-2017 164

Born: 12 July 1875 in Vienna, Austria

Died: 14 November 1954 in Cologne, Germany


Ernst Fischer's father was Jacob Fischer who was a composer of music and Professor at the world famous Vienna Academy. His mother was Emma Grädener, the daughter of the musician Karl Grädener. Ernst was educated in Vienna, and he studied at the University of Vienna under Mertens from 1894. His doctoral studies were supervised by Gegenbauer and he was awarded his doctorate by the University of Vienna in 1899. He spent 1899 at the University of Berlin, then studied at Zurich and Göttingen with Minkowski. From 1902 he was assistant to E Waelsch at the German Technische Hochschule of Brünn (now Brno), becoming a privatdozent there in 1904, then an extraordinary professor in 1910.

From 1911 until 1920, Fischer was professor at the University of Erlangen, appointed to fill the chair left vacant in the previous year when Paul Gordan retired. Emmy Noether had been awarded her doctorate from the University of Erlangen in 1907 having worked under Gordan's supervision. When Fischer arrived in Erlangen it was natural for Noether to work with him. After Noether's death in 1935, Weyl gave an address at which he spoke of Fischer's influence:-

Fischer's field was algebra ..., in particular the theory of elimination and of invariants. He exerted upon Emmy Noether, I believe, a more penetrating influence than Gordan did. Under his direction the transition from Gordan's formal standpoint to the Hilbert method of approach was accomplished. She refers in her papers at this time again and again to conversations with Fischer.

Fischer is best known for one of the highpoints of the theory of Lebesgue integration, called the Riesz-Fischer Theorem. The theorem is that the space of all square-integrable functions is complete, in the sense that Hilbert space is complete, and the two spaces are isomorphic by means of a mapping based on a complete orthonormal system.

Fischer took part in World War I from 1915 to 1918. He married Ellis Strauss, the daughter of Pfarrers Eugen Strauss, in Erlangen in 1917. Fischer was 42 years old, his wife being 26; they had one daughter. From 1920 Fischer worked at the University of Cologne, remaining there until he retired in 1938.

Let us note again the major result, the Riesz-Fischer Theorem, for which he is best known as Weyl noted in the above quote. In 1907 Ernst Fischer studied orthonormal sequences of functions and gave necessary and sufficient conditions for a sequence of constants to be the Fourier coefficients of a square integrable function. His two papers of 1907 were Sur la convergence en moyenne and Applications d'un théorèm sur la convergence en moyenne both published in Comptes rendus of the Academy of Sciences in Paris. This work led to the concept of a Hilbert space. Frigyes Riesz published a similar result in the same year. The theorem, now called the Riesz-Fischer theorem, is one of the great achievements of the Lebesgue theory of integration.

Fischer went on to study Hadamard determinants, publishing his results in 1908 in the Archiv der Mathematik und Physik, and Sylvester determinants, publishing a paper in Crelle's Journal in the following year. He also published in the Carathéodory Problem and on finite abelian groups.


 

Articles:

  1. M Pinl, Ernst Sigismund Fischer, Neue Deutsche Biographie 5 (Berlin, 1952- ), 183.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.