المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

الادلة المحرزة
1-9-2016
Sensing gases
29-3-2017
علاقات عامة
8-5-2020
مراحل التحدي
5-11-2014
Charles Tweedie
2-4-2017
الحسين بن هبة اللّه السوراوي ( ت / 579 هـ)
28-4-2016

Greens functions  
  
1898   03:54 مساءاً   date: 3-1-2017
Author : Richard Fitzpatrick
Book or Source : Classical Electromagnetism
Page and Part : p 124

Green's functions

Earlier on in this lecture course we had to solve Poisson's equation

 (1.1)

where v(r) is denoted the source function. The potential u(r) satisfies the boundary condition

 (1.2)

provided that the source function is reasonably localized. The solutions to Poisson's equation are superposable (because the equation is linear). This property is exploited in the Green's function method of solving this equation. The Green's function G(r, rʹ) is the potential, which satisfies the appropriate boundary conditions, generated by a unit amplitude point source located at rʹ. Thus,

 (1.3)

Any source function v(r) can be represented as a weighted sum of point sources

 (1.4)

It follows from super posability that the potential generated by the source v(r) can be written as the weighted sum of point source driven potentials (i.e., Green's functions)

 (1.5)

We found earlier that the Green's function for Poisson's equation is

 (1.6)

It follows that the general solution to Eq. (1.1) is written

 (1.7)

Note that the point source driven potential (1.6) is perfectly sensible. It is spherically symmetric about the source, and falls off smoothly with increasing distance from the source. We now need to solve the wave equation

 (1.8)

where v(r, t) is a time varying source function. The potential u(r, t) satisfies the boundary conditions

 (1.9)

The solutions to Eq. (1.8) are superposable (since the equation is linear), so a Green's function method of solution is again appropriate. The Green's function G(r, rʹ, t, tʹ) is the potential generated by a point impulse located at position rʹ and applied at time tʹ. Thus,

 (1.10)

Of course, the Green's function must satisfy the correct boundary conditions. A general source v(r, t) can be built up from a weighted sum of point impulses

 (1.11)

It follows that the potential generated by v(r, t) can be written as the weighted sum of point impulse driven potentials

 (1.12)

So, how do we find the Green's function? Consider

 (1.13)

where F(ϕ) is a general scalar function. Let us try to prove the following theorem:

 (1.14)

At a general point, rrʹ, the above expression reduces to

 (1.15)

So, we basically have to show that G is a valid solution of the free space wave equation. We can easily show that

 (1.16)

It follows by simple differentiation that

 (1.17)

where Fʹ(ϕ) = dF(ϕ)=. We can derive analogous equations for 2G/y2 and 2G/z2. Thus,

 (1.18)

giving

 (1.19)

which is the desired result. Consider, now, the region around r = rʹ. It is clear from Eq. (1.17) that the dominant term on the left-hand side as |r - rʹ| → 0 is the first one, which is essentially F2(|r - rʹ|-1)=x2. It is also clear that (1/c2)(2G/t2) is negligible compared to this term. Thus, as |r - rʹ| → 0 we find that

 (1.20)

However, according to Eqs. (1.3) and (1.6)

 (1.21)

We conclude that

 (1.22)

which is the desired result. Let us now make the special choice

 (1.23)

It follows from Eq. (1.22) that

 (1.24)

Thus,

 (1.25)

is the Green's function for the driven wave equation (1.8). The time dependent Green's function (1.25) is the same as the steady state Green's function (1.6), apart from the delta function appearing in the former. What does this delta function do? Well, consider an observer at point r. Because of the delta function our observer only measures a non-zero potential at one particular time

 (1.26)

It is clear that this is the time the impulse was applied at position rʹ (i.e., tʹ) plus the time taken for a light signal to travel between points rʹ and r. At time t > tʹ the locus of all points at which the potential is non-zero is

 (1.27)

In other words, it is a sphere centred on rʹ whose radius is the distance traveled by light in the time interval since the impulse was applied at position rʹ. Thus, the Green's function (1.25) describes a spherical wave which emanates from position rʹ at time tʹ and propagates at the speed of light. The amplitude of the wave is inversely proportional to the distance from the source.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.