المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الكيمياء
عدد المواضيع في هذا القسم 11123 موضوعاً
علم الكيمياء
الكيمياء التحليلية
الكيمياء الحياتية
الكيمياء العضوية
الكيمياء الفيزيائية
الكيمياء اللاعضوية
مواضيع اخرى في الكيمياء
الكيمياء الصناعية

Untitled Document
أبحث عن شيء أخر
Rise-fall Λyes Λno
2024-11-05
Fall-rise vyes vno
2024-11-05
Rise/yes/no
2024-11-05
ماشية اللحم كالميك في القوقاز Kalmyk breed
2024-11-05
Fallyes o
2024-11-05
تركيب وبناء جسم الحيوان (الماشية)
2024-11-05

النسيب والغزل
23-03-2015
موقع التفاعل Catalytic Site
8-10-2017
نخيل الزينة (نخيل أريكا)
2024-07-12
قاعدة « احترام مال المسلم و عمله‌ »
21-9-2016
حكم الوضوء
28/11/2022
John Michael Hammersley
25-1-2018


Sequence Rules for Specifying Configuration  
  
2083   11:59 صباحاً   التاريخ: 31-5-2016
المؤلف : John McMurry
الكتاب أو المصدر : Organic Chemistry
الجزء والصفحة : 9th - p124
القسم : علم الكيمياء / الكيمياء العضوية / مواضيع عامة في الكيمياء العضوية /


أقرأ أيضاً
التاريخ: 18-11-2019 1063
التاريخ: 21-12-2021 1563
التاريخ: 5-8-2018 1054
التاريخ: 1-12-2019 1077

Sequence Rules for Specifying Configuration

  Structural drawings provide a visual representation of stereochemistry, but a written method for indicating the three-dimensional arrangement, or configuration, of substituents at a chirality center is also needed. This method employs a set of sequence rules to rank the four groups attached to the chirality center and then looks at the handedness with which those groups are attached. Called the Cahn–Ingold–Prelog rules after the chemists who proposed them, the sequence rules are as follows:

Rule 1

Look at the four atoms directly attached to the chirality center, and rank them according to atomic number. The atom with the highest atomic number has the highest ranking (first), and the atom with the lowest atomic number (usually hydrogen) has the lowest ranking (fourth). When different isotopes of the same element are compared, such as deuterium (2H) and protium (1H), the heavier isotope ranks higher than the lighter isotope. Thus, atoms commonly found in organic compounds have the following order.

Rule 2

If a decision can’t be reached by ranking the first atoms in the substituent, look at the second, third, or fourth atoms away from the chirality center until the first difference is found. A -CH2CH3 substituent and a -CH3 substituent are equivalent by rule 1 because both have carbon as the first atom. By rule 2, however, ethyl ranks higher than methyl because ethyl has a carbon as its highest second atom, while methyl has only hydrogen as its second atom. Look at the following pairs of examples to see how the rule works:

Rule 3

Multiple-bonded atoms are equivalent to the same number of singlebonded atoms. For example, an aldehyde substituent (-CH=O), which has a carbon atom doubly bonded to one oxygen, is equivalent to a substituent having a carbon atom singly bonded to two oxygens:

As further examples, the following pairs are equivalent:

Having ranked the four groups attached to a chiral carbon, we describe the stereochemical configuration around the carbon by orienting the molecule so that the group with the lowest ranking (4) points directly away from us. We then look at the three remaining substituents, which now appear to radiate toward us like the spokes on a steering wheel (Figure 1-1). If a curved arrow drawn from the highest to second-highest to third-highest ranked substituent (1→2→3) is clockwise, we say that the chirality center has the R configuration (Latin rectus, meaning “right”). If an arrow from 1 → 2 → 3 is counterclockwise, the chirality center has the S configuration (Latin sinister, meaning “left”). To remember these assignments, think of a car’s steering wheel when making a Right (clockwise) turn.

Figure 1-1 Assigning configuration to a chirality center. When the molecule is oriented so that the lowest-ranked group (4) is toward the rear, the remaining three groups radiate toward the viewer like the spokes of a steering wheel. If the direction of travel 1 2 3 is clockwise (right turn), the center has the R configuration. If the direction of travel 1 2 3 is counterclockwise (left turn), the center is S.

  Look at (-)-lactic acid in Figure 1-2 for an example of how to assign configuration. Sequence rule 1 says that -OH is ranked 1 and -H is ranked 4, but it doesn’t allow us to distinguish between -CH3 and -CO2H because both groups have carbon as their first atom. Sequence rule 2, however, says that- CO2H ranks higher than -CH3 because O (the highest second atom in -CO2H) outranks H (the highest second atom in -CH3). Now, turn the molecule so that the fourth-ranked group ( -H) is oriented toward the rear, away from the observer. Since a curved arrow from 1 (- OH) to 2 (-CO2H) to 3 ( -CH3) is clockwise (right turn of the steering wheel), (-)-lactic acid has the R configuration. Applying the same procedure to (+)-lactic acid leads to the opposite assignment.

Figure 1-2 Assigning configuration to (a) (R)-(-)-lactic acid and (b) (S)-(+)-lactic acid.

   Further examples are provided by naturally occurring (-)-glyceraldehyde and (1)-alanine, which both have the S configuration as shown in Figure 1-3. Note that the sign of optical rotation, (+) or (-), is not related to the R,S designation. (S)-Glyceraldehyde happens to be levorotatory (-), and (S)-alanine happens to be dextrorotatory (+). There is no simple correlation between R,S configuration and direction or magnitude of optical rotation.

Figure 1-3 Assigning configuration to (a) (-)-glyceraldehyde. (b) (+)-alanine. Both happen to have the S configuration, although one is levorotatory and the other is dextrorotatory.

One additional point needs to be mentioned—the matter of absolute configuration. How do we know that the assignments of R and S configuration are correct in an absolute, rather than a relative, sense? Since we can’t see the molecules themselves, how do we know that the R configuration belongs to the levorotatory enantiomer of lactic acid? This difficult question was finally solved in 1951, when an X-ray diffraction method was found for determining the absolute spatial arrangement of atoms in a molecule. Based on those results, we can say with certainty that the R,S conventions are correct.




هي أحد فروع علم الكيمياء. ويدرس بنية وخواص وتفاعلات المركبات والمواد العضوية، أي المواد التي تحتوي على عناصر الكربون والهيدروجين والاوكسجين والنتروجين واحيانا الكبريت (كل ما يحتويه تركيب جسم الكائن الحي مثلا البروتين يحوي تلك العناصر). وكذلك دراسة البنية تتضمن استخدام المطيافية (مثل رنين مغناطيسي نووي) ومطيافية الكتلة والطرق الفيزيائية والكيميائية الأخرى لتحديد التركيب الكيميائي والصيغة الكيميائية للمركبات العضوية. إلى عناصر أخرى و تشمل:- كيمياء عضوية فلزية و كيمياء عضوية لا فلزية.


إن هذا العلم متشعب و متفرع و له علاقة بعلوم أخرى كثيرة ويعرف بكيمياء الكائنات الحية على اختلاف أنواعها عن طريق دراسة المكونات الخلوية لهذه الكائنات من حيث التراكيب الكيميائية لهذه المكونات ومناطق تواجدها ووظائفها الحيوية فضلا عن دراسة التفاعلات الحيوية المختلفة التي تحدث داخل هذه الخلايا الحية من حيث البناء والتخليق، أو من حيث الهدم وإنتاج الطاقة .


علم يقوم على دراسة خواص وبناء مختلف المواد والجسيمات التي تتكون منها هذه المواد وذلك تبعا لتركيبها وبنائها الكيميائيين وللظروف التي توجد فيها وعلى دراسة التفاعلات الكيميائية والاشكال الأخرى من التأثير المتبادل بين المواد تبعا لتركيبها الكيميائي وبنائها ، وللظروف الفيزيائية التي تحدث فيها هذه التفاعلات. يعود نشوء الكيمياء الفيزيائية إلى منتصف القرن الثامن عشر . فقد أدت المعلومات التي تجمعت حتى تلك الفترة في فرعي الفيزياء والكيمياء إلى فصل الكيمياء الفيزيائية كمادة علمية مستقلة ، كما ساعدت على تطورها فيما بعد .