المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24
من آداب التلاوة
2024-11-24
مواعيد زراعة الفجل
2024-11-24
أقسام الغنيمة
2024-11-24
سبب نزول قوله تعالى قل للذين كفروا ستغلبون وتحشرون الى جهنم
2024-11-24



الحالة الصلبة  
  
320   10:38 صباحاً   التاريخ: 2024-10-01
المؤلف : بيتر أتكينز
الكتاب أو المصدر : الكيمياء الفيزيائية
الجزء والصفحة : ص 67 – ص 69
القسم : علم الفيزياء / الفيزياء والعلوم الأخرى / الفيزياء الكيميائية /


أقرأ أيضاً
التاريخ: 2023-10-04 1126
التاريخ: 1-1-2017 1191
التاريخ: 2023-10-04 1173
التاريخ: 2023-11-30 1154

ترتكز الكيمياء الفيزيائية على أساس أكثر رسوخًا فيما يتعلق بالحالة الصلبة للمواد. فهنا، بدلا من أن تكون الحركة واضحة (كما في حالة الغازات)، أو تكون مقيدة ولكنها ذات أهمية (كما في حالة السوائل)، فإنه يبدو من الوهلة الأولى أنه لا توجد حركة على الإطلاق في المادة الصلبة بما أنه يمكن اعتبار أن جميع ذراتها تتخذ أماكن ثابتة. هناك حركة قطعًا في المواد الصلبة؛ إلا أنها تتمثل بوجه عام في تأرجح الجزيئات في مكانها أثناء اهتزازها، ولهذا يمكن تجاهلها مبدئيًا.

إن التقنية التجريبية الأساسية لتحديد بنية المواد الصلبة هي «حيود الأشعة السينية» (أو «التصوير البلوري بالأشعة السينية»). ومع ذلك، يجب أن أقر بأن فهم توزيع الذرات في الجزيئات شيء مهم جدا بالنسبة إلى علم الأحياء الجزيئي والكيمياء غير العضوية، لدرجة أن اختصاصيي هذين العلمين يعتبرون على الأرجح تقنية حيود الأشعة السينية ملكية خاصة بهم؛ وأظن أنه يصح لنا القول بأن علماء الكيمياء الفيزيائية بوجه عام يروقهم إسقاط هذه التقنية من حساباتهم ولكنهم يتمسكون باستنتاجاتها بشدة. وتتداخل استنتاجاتهم مع اهتمامات علماء المواد، نظرًا إلى أنه هنا، كما في علم الأحياء، ترتبط البنية ارتباطًا وثيقًا بالوظيفة.

لن أسهب في الحديث كثيرًا عن تلك التقنية نظرًا إلى أن علماء الكيمياء الفيزيائية، كما قلت، يروقهم بشدة إسقاطها من حساباتهم؛ وبدلا من ذلك سأركز على ما تكشفه. باختصار، تستفيد تقنية حيود الأشعة السينية من حقيقة أن الإشعاع الكهرومغناطيسي (الذي يشمل الأشعة السينية) يتألف من موجات قد تتداخل بعضها مع بعض وتكون مناطق ذات شدة كهرومغناطيسية متزايدة ومتناقصة. إن هذا النمط الذي يُسمى بـ «نمط الحيود» هو سمة خاصة بالجسم الموجود في مسار الأشعة، ويمكن الاستعانة بالإجراءات الرياضية لتفسير النمط فيما يتعلق ببنية الجسم. ويحدث الحيود عندما يكون الطول الموجي للإشعاع مماثلا لأبعاد الجسم وللأشعة السينية أطوال موجية مماثلة للمسافات بين الذرات في المواد الصلبة، ومن ثَم تكون وسيلة مثالية لدراسة توزيعها.

تتكون البلورات من صفوف متراصة من الذرات في مصفوفات متسقة، وذلك كما تخيلها رينيه هوي (1743–1822) قبل فترة طويلة في عام 1784 تقريبا، سيرًا على خطى تخمينات مماثلة ليوهانس كيبلر في عام 1611 وروبرت هوك في عام 1665، وهو ما أكدته تقنية حيود الأشعة السينية في القرن العشرين وأبسط نموذج لتفسير بنية بلورات الفلزات الأساسية (الفضة والنحاس والحديد وما إلى ذلك) هو تخيل كل ذرة على شكل كرة صلبة ودراسة كيف يمكن ترتيب هذه الكرات معًا في طبقات لإعادة إنتاج البلورة بأكملها. وللكثير من الفلزات بنى «متراصة بشكل متقارب» حيث تتراص الكرات بعضها بجوار البعض بأكفأ طريقة ممكنة (انظر شكل 4–5). وتتمثل إحدى نتائج ذلك في أن الفلزات عبارة عن مواد كثيفة حيث تشغل مساحة كبيرة جدًّا بذراتها المتراصة عن قرب بعضها مع بعض.

شكل 4–5: ثمة طريقتان لتراص الكرات المتماثلة عديمة الشحنة، الأولى تعطينا التوزيع «المكعب الشكل» والأخرى تعطينا التوزيع «السداسي الشكل». يُعد النحاس مثالا على نوع التوزيع الأول، والزنك مثالاً على نوع التوزيع الثاني. ويؤثر نوع التراص على الخواص الميكانيكية للفلز. (الخطوط التي تشير إلى التماثل المكعب تصل بين الكرات على ثلاث طبقات).

 

تمثل المواد الصلبة الأيونية مشكلة مزدوجة للكاتيونات والأنيونات أنصاف أقطار مختلفة وشحنتان متعاكستان. ولا نحصل على التوزيع ذي الأقل طاقة إلا إذا كانت الكاتيونات محاطة بالأنيونات والعكس صحيح (تُعد بنية كلوريد الصوديوم الموضحة في شكل 1–3 مثالاً على ذلك). هذا الشرط يفرض قيدًا شديدًا على التوزيعات المحتملة للأيونات ولا يتحقق أبدًا التراص المتقارب الكثيف المميز للفلزات. لهذا السبب غالبًا، تكون المواد الصلبة الأيونية أقل كثافة عادةً من الفلزات. وإذا لم تكن هاتان المشكلتان كافيتين، فإليك المزيد تتمتع الكثير من المواد الصلبة بأعداد مختلفة من الكاتيونات والأنيونات (على سبيل المثال، كلوريد الكالسيوم، CaCl2)، وفي بعض المواد الصلبة، تشوه الروابط التساهمية بخواصها الاتجاهية المميزة، التوزيعات المتوقعة على أساس تراص الكرات البسيط. وإذا كانت تلك المشكلات الأربعة، عند هذه المرحلة، غير كافية أيضًا، تتمثل مشكلة خامسة في أن الأيونات في الكثير من الحالات تكون بعيدة تمامًا عن الشكل الكروي (أيونات الكبريتات ، مثلا، رباعية السطوح، وهناك الكثير من الأمثلة الأكثر تعقيدًا)، ويجب أن تتراص جميع أنواع الأشكال الغريبة معًا بمصفوفات منتظمة بدون شحنة كهربائية إجمالية صافية.

لم يخش علماء الكيمياء الفيزيائية هذه المشكلات وإنما تهيبوها. لذا، لجئوا على نطاق واسع إلى الاستعانة بأجهزة الكمبيوتر لجمع كل أنواع البلورات من الأشكال المعقدة، ودمجوا في البرمجيات النماذج الخاصة بكيفية تفاعل المكونات المختلفة بعضها مع بعض وجعلوا أجهزة الكمبيوتر تبحث عن التوزيعات التي لها أقل طاقة. لقد أثبت هذا النوع من الدارسة فاعليته بصفة خاصة عند تطوير المواد الصلبة المعقدة التي أصبحت الآن تُستخدم كمواد محفزة. وتحظى هذه المواد الصلبة المسامية عادة بقنوات واسعة بين كتل الأيونات تسمح باختراق المواد المتفاعلة وتسللها وتزيد القنوات بفاعلية من مساحة السطح على نحو كبير من خلال إتاحة وصول جزيئات المواد المتفاعلة إلى النقاط الساخنة المتفاعلة في داخل المادة الصلبة.

لا تُعد التفاعلية الكيميائية الجانب الوحيد الذي يهتم به علماء الكيمياء الفيزيائية فيما يخص المواد الصلبة. فهنا تندمج اهتماماتهم مع اهتمامات الفيزيائيين وعلماء المواد، الذين يملكون التقنيات اللازمة لحوسبة الخواص الكهربائية والضوئية والميكانيكية الخاصة بالمواد الصلبة المعقدة جدًّا حتى والبحث عن طريقة لتعزيز الخواص التي يهتمون بها، هذا بالتعاون مع علماء الكيمياء الفيزيائية وغير العضوية (وعلى نحو متزايد مع علماء الكيمياء العضوية). وأحد المجالات التي تتبادر إلى الذهن على الفور حيث يكمن التعاون المثمر هو تطوير المواد الخزفية التي تُظهر الخاصية الاستثنائية المتمثلة في الموصلية الفائقة، وهي القدرة على توصيل الكهرباء دون مقاومة، في درجات حرارة لا تقل كثيرًا عن درجة حرارة الغرفة. وثمة مجال آخر هو تطوير مواد قطبية كهربائية ومواد إلكتروليتية للإنتاج الفعّال للكهرباء بواسطة البطاريات الحديثة.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.