المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الفرعون رعمسيس الثامن
2024-11-28
رعمسيس السابع
2024-11-28
: نسيآمون الكاهن الأكبر «لآمون» في «الكرنك»
2024-11-28
الكاهن الأكبر (لآمون) في عهد رعمسيس السادس (الكاهن مري باستت)
2024-11-28
مقبرة (رعمسيس السادس)
2024-11-28
حصاد البطاطس
2024-11-28

الموطن الأصلي والوصف النباتي للمانجو
2023-12-22
يلاحظ في اسلوب التأثير التراكمي طويل الأمد
10-1-2022
تعريف ادارة المعرفة التسويقية
2024-09-16
النسبة
14-9-2016
محورية القرآن بين الله تعالى والإنسان
2023-06-21
تكوين الدم Hematopoiesis
20-7-2018


Forced oscillations  
  
960   12:59 صباحاً   التاريخ: 2024-03-09
المؤلف : Richard Feynman, Robert Leighton and Matthew Sands
الكتاب أو المصدر : The Feynman Lectures on Physics
الجزء والصفحة : Volume I, Chapter 21
القسم : علم الفيزياء / الفيزياء الكلاسيكية / الميكانيك /


أقرأ أيضاً
التاريخ: 9-3-2021 2052
التاريخ: 28-12-2016 3126
التاريخ: 8-2-2016 2623
التاريخ: 2024-01-29 791

We shall discuss the forced harmonic oscillator, i.e., one in which there is an external driving force acting. The equation then is the following:

We would like to find out what happens in these circumstances. The external driving force can have various kinds of functional dependence on the time; the first one that we shall analyze is very simple—we shall suppose that the force is oscillating:

Notice, however, that this ω is not necessarily ω0: we have ω under our control; the forcing may be done at different frequencies. So, we try to solve Eq. (21.8) with the special force (21.9). What is the solution of (21.8)? One special solution, (we shall discuss the more general cases later) is

where the constant is to be determined. In other words, we might suppose that if we kept pushing back and forth, the mass would follow back and forth in step with the force. We can try it anyway. So we put (21.10) and (21.9) into (21.8), and get

We have also put in k=mω20, so that we will understand the equation better at the end. Now because the cosine appears everywhere, we can divide it out, and that shows that (21.10) is, in fact, a solution, provided we pick C just right. The answer is that C must be

That is, m oscillates at the same frequency as the force, but with an amplitude which depends on the frequency of the force, and also upon the frequency of the natural motion of the oscillator. It means, first, that if ω is very small compared with ω0, then the displacement and the force are in the same direction. On the other hand, if we shake it back and forth very fast, then (21.12) tells us that C is negative if ω is above the natural frequency ω0 of the harmonic oscillator. (We will call ω0 the natural frequency of the harmonic oscillator, and ω the applied frequency.) At very high frequency the denominator may become very large, and there is then not much amplitude.

Of course, the solution we have found is the solution only if things are started just right, for otherwise there is a part which usually dies out after a while. This other part is called the transient response to F(t), while (21.10) and (21.12) are called the steady-state response.

According to our formula (21.12), a very remarkable thing should also occur: if ω is almost exactly the same as ω0, then C should approach infinity. So, if we adjust the frequency of the force to be “in time” with the natural frequency, then we should get an enormous displacement. This is well known to anybody who has pushed a child on a swing. It does not work very well to close our eyes and push at a certain speed at random. If we happen to get the right timing, then the swing goes very high, but if we have the wrong timing, then sometimes we may be pushing when we should be pulling, and so on, and it does not work.

If we make ω exactly equal to ω0, we find that it should oscillate at an infinite amplitude, which is, of course, impossible. The reason it does not is that something goes wrong with the equation, there are some other frictional terms, and other forces, which are not in (21.8) but which occur in the real world. So, the amplitude does not reach infinity for some reason; it may be that the spring breaks!




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.