أقرأ أيضاً
التاريخ: 2024-02-06
884
التاريخ: 22-11-2020
1259
التاريخ: 2024-09-05
240
التاريخ: 2024-02-29
800
|
The discovery of the laws of dynamics, or the laws of motion, was a dramatic moment in the history of science. Before Newton’s time, the motions of things like the planets were a mystery, but after Newton there was complete understanding. Even the slight deviations from Kepler’s laws, due to the perturbations of the planets, were computable. The motions of pendulums, oscillators with springs and weights in them, and so on, could all be analyzed completely after Newton’s laws were enunciated. So it is with this chapter: before this chapter we could not calculate how a mass on a spring would move; much less could we calculate the perturbations on the planet Uranus due to Jupiter and Saturn. After this chapter we will be able to compute not only the motion of the oscillating mass, but also the perturbations on the planet Uranus produced by Jupiter and Saturn!
Galileo made a great advance in the understanding of motion when he discovered the principle of inertia: if an object is left alone, is not disturbed, it continues to move with a constant velocity in a straight line if it was originally moving, or it continues to stand still if it was just standing still. Of course, this never appears to be the case in nature, for if we slide a block across a table it stops, but that is because it is not left to itself—it is rubbing against the table. It required a certain imagination to find the right rule, and that imagination was supplied by Galileo.
Of course, the next thing which is needed is a rule for finding how an object changes its speed if something is affecting it. That is, the contribution of Newton. Newton wrote down three laws: The First Law was a mere restatement of the Galilean principle of inertia just described. The Second Law gave a specific way of determining how the velocity changes under different influences called forces. The Third Law describes the forces to some extent, and we shall discuss that at another time. Here we shall discuss only the Second Law, which asserts that the motion of an object is changed by forces in this way: the time-rate-of-change of a quantity called momentum is proportional to the force. We shall state this mathematically shortly, but let us first explain the idea.
Momentum is not the same as velocity. A lot of words are used in physics, and they all have precise meanings in physics, although they may not have such precise meanings in everyday language. Momentum is an example, and we must define it precisely. If we exert a certain push with our arms on an object that is light, it moves easily; if we push just as hard on another object that is much heavier in the usual sense, then it moves much less rapidly. Actually, we must change the words from “light” and “heavy” to less massive and more massive, because there is a difference to be understood between the weight of an object and its inertia. (How hard it is to get it going is one thing, and how much it weighs is something else.) Weight and inertia are proportional, and on the earth’s surface are often taken to be numerically equal, which causes a certain confusion to the student. On Mars, weights would be different but the amount of force needed to overcome inertia would be the same.
We use the term mass as a quantitative measure of inertia, and we may measure mass, for example, by swinging an object in a circle at a certain speed and measuring how much force we need to keep it in the circle. In this way we find a certain quantity of mass for every object. Now the momentum of an object is a product of two parts: its mass and its velocity. Thus, Newton’s Second Law may be written mathematically this way:
Now there are several points to be considered. In writing down any law such as this, we use many intuitive ideas, implications, and assumptions which are at first combined approximately into our “law.” Later we may have to come back and study in greater detail exactly what each term means, but if we try to do this too soon, we shall get confused. Thus, at the beginning we take several things for granted. First, that the mass of an object is constant; it isn’t really, but we shall start out with the Newtonian approximation that mass is constant, the same all the time, and that, further, when we put two objects together, their masses add. These ideas were of course implied by Newton when he wrote his equation, for otherwise it is meaningless. For example, suppose the mass varied inversely as the velocity; then the momentum would never change in any circumstance, so the law means nothing unless you know how the mass changes with velocity. At first, we say, it does not change.
Then there are some implications concerning force. As a rough approximation we think of force as a kind of push or pull that we make with our muscles, but we can define it more accurately now that we have this law of motion. The most important thing to realize is that this relationship involves not only changes in the magnitude of the momentum or of the velocity but also in their direction. If the mass is constant, then Eq. (9.1) can also be written as
The acceleration a is the rate of change of the velocity, and Newton’s Second Law says more than that the effect of a given force varies inversely as the mass; it says also that the direction of the change in the velocity and the direction of the force are the same. Thus, we must understand that a change in a velocity, or an acceleration, has a wider meaning than in common language: The velocity of a moving object can change by its speeding up, slowing down (when it slows down, we say it accelerates with a negative acceleration), or changing its direction of motion. There we saw that an object moving in a circle of radius R with a certain speed v along the circle falls away from a straight-line path by a distance equal to 1/2(v2/R)t2 if t is very small. Thus, the formula for acceleration at right angles to the motion is
and a force at right angles to the velocity will cause an object to move in a curved path whose radius of curvature can be found by dividing the force by the mass to get the acceleration, and then using (9.3).
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|