المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
ماشية اللحم في الولايات المتحدة الأمريكية
2024-11-05
أوجه الاستعانة بالخبير
2024-11-05
زكاة البقر
2024-11-05
الحالات التي لا يقبل فيها الإثبات بشهادة الشهود
2024-11-05
إجراءات المعاينة
2024-11-05
آثار القرائن القضائية
2024-11-05

المرتفعات المحيطية
4-1-2016
أصل المذنبات
23-11-2016
وضع الجيش العباسي في عهد المستعصم بالله.
2023-04-24
صورة سيكولوجية
25-7-2020
الخصال المطيّبة للعيش / النسب
2024-01-27
من اسرار القرآن
8-10-2014

Edge Cover  
  
1415   05:39 مساءً   date: 17-3-2022
Author : Pemmaraju, S. and Skiena, S.
Book or Source : Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Cambridge, England: Cambridge University Press
Page and Part : ...


Read More
Date: 24-2-2022 2377
Date: 28-2-2022 1347
Date: 20-4-2022 2435

Edge Cover

An edge cover is a subset of edges defined similarly to the vertex cover (Skiena 1990, p. 219), namely a collection of graph edges such that the union of edge endpoints corresponds to the entire vertex set of the graph. Therefore, only graphs with no isolated points have an edge cover.

A graph can be tested in the Wolfram Language to see if it is an edge cover of a given graph using EdgeCoverQ[g]. Precomputed edge covers for many named graphs can be looked up using GraphData[graph"EdgeCovers"].

An edge cover having the smallest possible number of edges for a given graph is known as a minimum edge cover. A minimum edge cover of a graph can be found in the Wolfram Language using FindEdgeCover[g]. An edge cover that does not contain any other edge cover as a proper subset is known as a minimal edge cover.


REFERENCES

Pemmaraju, S. and Skiena, S. Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Cambridge, England: Cambridge University Press, p. 318, 2003.

Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, p. 178, 1990.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.