Read More
Date: 20-2-2022
541
Date: 21-2-2022
436
Date: 20-2-2022
510
|
A theorem is a statement that can be demonstrated to be true by accepted mathematical operations and arguments. In general, a theorem is an embodiment of some general principle that makes it part of a larger theory. The process of showing a theorem to be correct is called a proof.
Although not absolutely standard, the Greeks distinguished between "problems" (roughly, the construction of various figures) and "theorems" (establishing the properties of said figures; Heath 1956, pp. 252, 262, and 264).
According to the Nobel Prize-winning physicist Richard Feynman (1985), any theorem, no matter how difficult to prove in the first place, is viewed as "trivial" by mathematicians once it has been proven. Therefore, there are exactly two types of mathematical objects: trivial ones, and those which have not yet been proven.
The late mathematician P. Erdős has often been associated with the observation that "a mathematician is a machine for converting coffee into theorems" (e.g., Hoffman 1998, p. 7). However, this characterization appears to be due to his friend, Alfred Rényi (MacTutor, Malkevitch). This thought was developed further by Erdős' friend and Hungarian mathematician Paul Turán, who suggested that weak coffee was suitable "only for lemmas" (MacTutor, Malkevitch).
R. Graham has estimated that upwards of mathematical theorems are published each year (Hoffman 1998, p. 204).
Feynman, R. P. Surely You're Joking, Mr. Feynman! New York: Bantam Books, 1985.
Heath, T. L. The Thirteen Books of the Elements, 2nd ed., Vol. 1: Books I and II. New York: Dover, 1956.
Hoffman, P. The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth. New York: Hyperion, 1998.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|