المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
تنفيذ وتقييم خطة إعادة الهيكلة (إعداد خطة إعادة الهيكلة1)
2024-11-05
مـعاييـر تحـسيـن الإنـتاجـيـة
2024-11-05
نـسـب الإنـتاجـيـة والغـرض مـنها
2024-11-05
المـقيـاس الكـلـي للإنتاجـيـة
2024-11-05
الإدارة بـمؤشـرات الإنـتاجـيـة (مـبادئ الإنـتـاجـيـة)
2024-11-05
زكاة الفطرة
2024-11-05


Paris-Harrington Theorem  
  
789   05:04 مساءً   date: 18-1-2022
Author : Borwein, J. and Bailey, D
Book or Source : Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.
Page and Part : ...


Read More
Date: 12-2-2022 858
Date: 17-2-2022 1839
Date: 17-2-2022 1697

Paris-Harrington Theorem

 

The Paris-Harrington theorem is a strengthening of the finite Ramsey's theorem by requiring that the homogeneous set be large enough so that cardH>=minH. Clearly, the statement can be expressed in the first-order language of arithmetic. It is easily provable in the second-order arithmetic, but is unprovable in first-order Peano arithmetic (Paris and Harrington 1977; Borwein and Bailey 2003, p. 34).

The original unprovability proof by Paris and Harrington used a model-theoretic argument. In any model M, the Paris-Harrington principle in its nonstandard instances allows construction of an initial segment which is a model of Peano arithmetic. It also follows that the function f(x)=minN such that for any colouring of x-tuples of N into x colors there is a subset H of N of size x+1 which is relatively large and such that |H|>minH eventually dominates every function provably recursive in Peano arithmetic.

Later, another approach to proving unprovability of the theorem using ordinals was introduced by J. Ketonen and R. Solovay.


REFERENCES

Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.

Bovykin, A. "Arithmetical Independence results. Short Online Tutorial." http://www.csc.liv.ac.uk/~andrey/tutorial.html.Paris, J. and Harrington, L. "A Mathematical Incompleteness in Peano Arithmetic." In Handbook for Mathematical Logic (Ed. J. Barwise). Amsterdam, Netherlands: North-Holland, 1977.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.