Read More
Date: 11-1-2022
![]()
Date: 14-2-2017
![]()
Date: 4-1-2022
![]() |
Let and
be totally ordered sets. Let
be the Cartesian product and define order as follows. For any
and
,
1. If , then
,
2. If , then
and
compare the same way as
(i.e., lexicographical order)
(Ciesielski 1997, p. 48; Rubin 1967; Suppes 1972). However, Dauben (1990, p. 104) and Moore (1982, p. 40) define multiplication in the reverse order.
Like addition, multiplication is not commutative, but it is associative,
![]() |
(1) |
An inductive definition for ordinal multiplication states that for any ordinal number ,
![]() |
(2) |
![]() |
(3) |
If is a limit ordinal, then
is the least ordinal greater than any ordinal in the set
(Suppes 1972, p. 212).
REFERENCES:
Ciesielski, K. Set Theory for the Working Mathematician. Cambridge, England: Cambridge University Press, 1997.
Dauben, J. W. Georg Cantor: His Mathematics and Philosophy of the Infinite. Princeton, NJ: Princeton University Press, 1990.
Moore, G. H. Zermelo's Axiom of Choice: Its Origin, Development, and Influence. New York: Springer-Verlag, 1982.
Rubin, J. E. Set Theory for the Mathematician. New York: Holden-Day, 1967.
Suppes, P. Axiomatic Set Theory. New York: Dover, 1972.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|